高考數(shù)學(xué)考試中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標準規(guī)定:“在每小題給出的四個選項中,只有一項是符合題目要求的,答對得5分,不答或答錯得0分”.某考生每道選擇題都選出了一個答案,能確定其中有6道題的答案是正確的,而其余題中,有兩道題都可判斷出有兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜.
試求出該考生的選擇題:
(I)得30分的概率;
(II)得多少分的概率最大;
(III)所得分數(shù)的數(shù)學(xué)期望.
見解析.
第一問利用古典概型概率計算可得概率值,得30分,就是除能確定做對的6道題之外,其余4題全部做錯..
第二問中,依題意,該考生選擇題得分的可能取值有:共五種.
得分為30,表示只做對有把握的那8道題,其余各題都做錯,于是其概率為:

類似的,可知得分為35的概率:
得分為40的概率:
得分為45的概率:
得分為50的概率:
∴該生選擇題得分為35分或40分的可能性最大
第三問中由(II)可知的分布列為:
可知期望值。
解:(I)得30分,就是除能確定做對的6道題之外,其余4題全部做錯..
依題意,易知在其余的四道題中,有兩道題答錯的概率各為,有一道題答錯的概率為,還有一道題答對的概率為,所以他做選擇題得30分的概率為:

(II)依題意,該考生選擇題得分的可能取值有:共五種.
得分為30,表示只做對有把握的那8道題,其余各題都做錯,于是其概率為:

類似的,可知得分為35的概率:
得分為40的概率:
得分為45的概率:
得分為50的概率:
∴該生選擇題得分為35分或40分的可能性最大.
(III)由(II)可知的分布列為:


35
40
45
50






練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是離散型隨機變量,,,且a<b,又Eξ=,Dξ=,則a+b的值為(  )
A.B.C.3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校從參加高三年級第一學(xué)期期末考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù),滿分為100分),將數(shù)學(xué)成績進行分組并根據(jù)各組人數(shù)制成如下頻率分布表:
(Ⅰ)將上面的頻率分布表補充完整,并估計本次考試全校85分以上學(xué)生的比例;
(Ⅱ)為了幫助成績差的同學(xué)提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215643288492.png" style="vertical-align:middle;" />中任選出兩位同學(xué),共同幫助成績在中的某一個同學(xué),試列出所有基本事件;若同學(xué)成績?yōu)?3分,同學(xué)成績?yōu)?5分,求兩同學(xué)恰好被安排在“二幫一”中同一小組的概率.
分 組
頻 數(shù)
頻 率
[40, 50 )
2
0.04
[ 50, 60 )
3
0.06
[ 60, 70 )
14
0.28
[ 70, 80 )
15
0.30
[ 80, 90 )
 
 
[ 90, 100 ]
4
0.08
合 計
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若隨機變量的分布表如表所示,則      ▲    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

今天你低碳了嗎?近來,國內(nèi)網(wǎng)站流行一種名為“碳排放計算器”的軟件,人們可以由此計算出自己每天的碳排放量。例如:家居用電的碳排放量(千克) = 耗電度數(shù)0.785,汽車的碳排放量(千克)=油耗公升數(shù)0.785等。懷化某中學(xué)高一一同學(xué)利用寒假在兩個小區(qū)逐戶進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查。若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”。這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例P數(shù)據(jù)如右:

(I)如果甲、乙來自A小區(qū),丙、丁來自B小區(qū),求這4人中恰有2人是低碳族的概率;
(II)A小區(qū)經(jīng)過大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機地從A小區(qū)中任選25人,記表示25個人中低碳族人數(shù),求E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了拓展網(wǎng)絡(luò)市場,騰訊公司為用戶推出了多款應(yīng)用,如“農(nóng)場”、“音樂”、“讀書”等.某校研究性學(xué)習(xí)小組準備舉行一次“使用情況”調(diào)查,從高二年級的一、二、三、四班中抽取10名學(xué)生代表參加,抽取不同班級的學(xué)生人數(shù)如下表所示:
班級
一班
二班
三班
四班
人數(shù)
2人
3人
4人
1人
(I)從這10名學(xué)生中隨機選出2名,求這2人來自相同班級的概率;
(Ⅱ) 假設(shè)在某時段,三名學(xué)生代表甲、乙、丙準備分別從農(nóng)場、音樂、讀書中任意選擇一項,他們選擇農(nóng)場的概率都為;選擇音樂的概率都為;選擇讀書的概率都為;他們的選擇相互獨立.設(shè)在該時段這三名學(xué)生中選擇讀書的總?cè)藬?shù)為隨機變量,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(14分)(理)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).
(I)求袋中所有的白球的個數(shù);
(II)求隨機變量的概率分布;
(III)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知離散型隨機變量的分布列如右表.若,,則               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機變量的分布如圖所示則數(shù)學(xué)期望         

0
1
2
3





 

查看答案和解析>>

同步練習(xí)冊答案