已知橢圓與雙曲線(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是   
【答案】分析:由題意得c2=a2-b2=m2+n2=1,c2=am=2,2n2=2m2+c2=3,由此可知
解答:解:由題意得c2=a2-b2=m2+n2=1 ①,
c2=am=2 ②,
2n2=2m2+c2=3 ③,
將=1 ①代入=3 ③得2n2=3m2+n2,
,代入=3 ③得c=2m,
再代入=2 ②得a=4m,
;
故答案為
點(diǎn)評:本題考查橢圓、雙曲線的定義和標(biāo)準(zhǔn)方程,雙曲線的離心率.解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省南通市如東縣高二(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓與雙曲線(m>0,n>0)具有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)兩曲線的一個交點(diǎn)為Q,∠QF1F2=90°,則雙曲線的離心率為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年江蘇省常州市武進(jìn)區(qū)前黃高中高二(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓與雙曲線(m>0,n>0)具有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)兩曲線的一個交點(diǎn)為Q,∠QF1F2=90°,則雙曲線的離心率為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:圓錐曲線(2)(解析版) 題型:選擇題

已知橢圓與雙曲線(m,n,p,q∈R+)有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個公共交點(diǎn).則|PF1|•|PF2|的值是( )
A.p2-m2
B.p-m
C.m-p
D.m2-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考考前數(shù)學(xué)客觀題訓(xùn)練2(理科)(解析版) 題型:選擇題

已知橢圓與雙曲線(m,n,p,q∈R+)有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個公共交點(diǎn).則|PF1|•|PF2|的值是( )
A.p2-m2
B.p-m
C.m-p
D.m2-p2

查看答案和解析>>

同步練習(xí)冊答案