分析 首項根據(jù)二倍角公式和輔助角公式得到:f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$.
(1)將$f(\frac{4π}{3})$代入函數(shù)解析式,利用特殊角的三角函數(shù)值進(jìn)行解答;
(2)根據(jù)正弦函數(shù)圖象的性質(zhì)進(jìn)行解答.
解答 解:$f(x)=\sqrt{3}sinxcosx+{cos^2}x$=$\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x+\frac{1}{2}=sin(2x+\frac{π}{6})+\frac{1}{2}$.
(1)$f(\frac{4π}{3})=sin(\frac{8π}{3}+\frac{π}{6})+\frac{1}{2}=1$;
(2)f(x)的最小正周期為$T=\frac{2π}{2}=π$,
令$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,k∈Z,
解得$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ$,
所以函數(shù)f(x)的單調(diào)減區(qū)間為$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,k∈Z.
點(diǎn)評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 27 | C. | 54 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2\sqrt{6}}{3}$ | B. | 0 | C. | 1 | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com