【題目】隨著經(jīng)濟(jì)的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除元后的余額為應(yīng)納稅所得額,依照個人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個人所得稅稅率表(調(diào)整前)

個人所得稅稅率表(調(diào)整后)

免征額

免征額

級數(shù)

全月應(yīng)納稅所得額

稅率(

級數(shù)

全月應(yīng)納稅所得額

稅率(

1

不超過元部分

1

不超過元部分

2

超過元至元的部分

2

超過元至元的部分

3

超過元至元的部分

3

超過元至元的部分

某稅務(wù)部門在某公式利用分層抽樣方法抽取2019年3月個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

收入(元)

人數(shù)

(1)先從收入在的人群中按分層抽樣抽取人,則收入在的人群中分別抽取多少人?

(2)在從(1)中抽取的人中選人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率.

【答案】(1) 3人,4人. (2)

【解析】

(1)本題根據(jù)分層抽樣的相關(guān)性質(zhì)即可得出結(jié)果;

(2)本題首先可以列出所有的可能情況數(shù)目,然后列出滿足題意的所有可能情況的數(shù)目,最后通過古典概型的概率計(jì)算公式即可得出結(jié)果。

(1)由頻數(shù)分布表可知從的人群中按分層抽樣抽取7人,其中人,中占人。

(2)由(1)知,人,分別記為中占人分別記為,再從這人中選人的所有組合有:種情況,

其中不在同一收入人群的有,共種,所以所求概率為。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動的民間藝術(shù);蘊(yùn)含了極致的數(shù)學(xué)美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計(jì)圖,其中的4個小圓均過正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自黑色部分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會開展了一次關(guān)于垃圾分類問卷調(diào)查的實(shí)踐活動,組織部分學(xué)生干部在幾個大型小區(qū)隨機(jī)抽取了共50名居民進(jìn)行問卷調(diào)查.調(diào)查結(jié)束后,學(xué)生會對問卷結(jié)果進(jìn)行了統(tǒng)計(jì),并將其中一個問題是否知道垃圾分類方法(知道或不知道)的調(diào)查結(jié)果統(tǒng)計(jì)如下表:

年齡(歲)

頻數(shù)

14

12

8

6

知道的人數(shù)

3

4

8

7

3

2

1)求上表中的的值,并補(bǔ)全右圖所示的的頻率直方圖;

2)在被調(diào)查的居民中,若從年齡在的居民中各隨機(jī)選取1人參加垃圾分類知識講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)針對某一線城市3050歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購買六類高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動與戶外用品、珠寶首飾、箱包)的金額(萬元)的頻數(shù)分布表如下:

女性

金額

頻數(shù)

20

40

80

50

10

男性

金額

頻數(shù)

45

75

90

60

30

1)將頻率視為概率,估計(jì)該城市中年人購買六類高價(jià)商品的金額不低于5000元的概率.

2)把購買六類高價(jià)商品的金額不低于5000元的中年人稱為高收入人群,根據(jù)已知條件完成列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為高收入人群與性別有關(guān)?

高收入人群

非高收入人群

合計(jì)

女性

60

男性

180

合計(jì)

500

參考公式:,其中

參考附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有極值點(diǎn),有兩個零點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),則( )

A. 存在

B. 存在

C. 存在

D. 存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在原點(diǎn)出切線相同.

(1)求的單調(diào)區(qū)間和極值;

(2)若時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為

1,過點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值;

2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問:是否存在實(shí)數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】C反應(yīng)蛋白(CRP)是機(jī)體受到微生物入侵或組織損傷等炎癥性刺激時(shí)肝細(xì)胞合成的急性相蛋白,醫(yī)學(xué)認(rèn)為CRP值介于0-10mg/L為正常值下面是某患者在治療期間連續(xù)5天的檢驗(yàn)報(bào)告單中CRP值(單位:mg/L)與治療天數(shù)的統(tǒng)計(jì)數(shù)據(jù):

治療天數(shù)x

1

2

3

4

5

CRPy

51

40

35

28

21

1)若CRPy與治療天數(shù)x具有線性相關(guān)關(guān)系,試用最小二乘法求出y關(guān)于x的線性回歸方程,并估計(jì)該患者至少需要治療多少天CRP值可以到正常水平;

2)為均衡城鄉(xiāng)保障待遇,統(tǒng)一保障范圍和支付標(biāo)準(zhǔn),為參保人員提供公平的基本醫(yī)療保障.某市城鄉(xiāng)醫(yī)療保險(xiǎn)實(shí)施辦法指出:門診報(bào)銷比例為50%:住院報(bào)銷比例,A類醫(yī)療機(jī)構(gòu)80%,B類醫(yī)療機(jī)構(gòu)60.若張華參加了城鄉(xiāng)基本醫(yī)療保險(xiǎn),他因CRP偏高選擇在某醫(yī)療機(jī)構(gòu)治療,醫(yī)生為張華提供了三種治療方案:

方案一:門診治療,預(yù)計(jì)每天診療費(fèi)80元;

方案二:住院治療,A類醫(yī)療機(jī)構(gòu),入院檢查需花費(fèi)600元,預(yù)計(jì)每天診療費(fèi)100元;

方案三:住院治療,B類醫(yī)療機(jī)構(gòu),入院檢查需花費(fèi)400元,預(yù)計(jì)每天診療費(fèi)40元;

若張華需要經(jīng)過連續(xù)治療n天,,請你為張華選擇最經(jīng)濟(jì)實(shí)惠的治療方案.

,.

查看答案和解析>>

同步練習(xí)冊答案