A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 求導,確定g(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1),(1,+∞)上分別有零點,f(x)=ax2-2ax+a+$\frac{1}{3}$=a(x-1)2+$\frac{1}{3}$≥$\frac{1}{3}$,可得f(x)在(0,$\frac{1}{3}$)上無根,在($\frac{1}{3}$,1),(1,+∞)上分別有兩個根,即可得出y=g[f(x)]的零點個數(shù).
解答 解:∵g(x)=bx3-2bx2+bx-$\frac{4}{27}$,∴g′(x)=b(3x-1)(x-1)
∴g(x)的單調(diào)增區(qū)間是(0,$\frac{1}{3}$),(1,+∞),單調(diào)減區(qū)間是($\frac{1}{3}$,1),
∵g(0)g($\frac{1}{3}$)<0,g($\frac{1}{3}$)g(1)<0,
∴g(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1),(1,+∞)上分別有零點,
∵f(x)=ax2-2ax+a+$\frac{1}{3}$=a(x-1)2+$\frac{1}{3}$≥$\frac{1}{3}$,
∴f(x)在(0,$\frac{1}{3}$)上無根,在($\frac{1}{3}$,1),(1,+∞)上分別有兩個根,
∴y=g[f(x)]的零點個數(shù)為4,
故選:B.
點評 本題考查函數(shù)的零點,考查導數(shù)知識的運用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | 9 | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2] | B. | (-∞,-2] | C. | [0,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com