【題目】已知函數(shù).

(1)若,求函數(shù)的單調區(qū)間;

(2)當時,試判斷函數(shù)的零點個數(shù),并說明理由.

【答案】(1) 見解析(2) 只有一個零點

【解析】

(1)求導,對a分類比較與3的大小,求得的解集,即可求得gx)的單調區(qū)間;

(2)由(1)可知,的單增區(qū)間為,單減區(qū)間為

得到f(x)的極大值為f(1) <0,,極小值為f(3)<0,又, 得到上只有一個零點.從而得到函數(shù)fx)只有一個零點.

(1)

,

所以的單增區(qū)間為,單減區(qū)間為

,,

所以的單增區(qū)間為,單減區(qū)間為

,,所以的單增區(qū)間為(0,.

綜上所述:當0<a<時,所以的單增區(qū)間為,單減區(qū)間為,

,的單增區(qū)間為,

時,所以的單增區(qū)間為,單減區(qū)間為

(2)當時,,,所以由(1)可知,的單增區(qū)間為,單減區(qū)間為

所以f(x)的極大值為f(1)=-1<0,,極小值為f(3)<0,

, 所以上只有一個零點.

綜上,只有一個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為等差數(shù)列,為等比數(shù)列,公比為q(q≠1).令A=.A={1,2},

(1)當,求數(shù)列的通項公式;

(2)設,q>0,試比較(n≥3)的大?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為。

(1)求函數(shù)的極大值;

(2)若函數(shù)有兩個零點,求a的取值范圍。

(3)在(2)的條件下,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】任意給定一個大于1的整數(shù)n,試設計一個程序或步驟對n是否為素數(shù)作出判斷.算法:第一步:判斷n是否等于2.______,則_______;若______,則執(zhí)行第二步;第二步:依次從_______是不是n的因數(shù),若有_________,則n不是_________數(shù);若_______,則n____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】王明、李東、張紅三位同學在第一、第二學期消費的部分文具的數(shù)量如表所示:

姓名

第一學期

第二學期

筆記本

練習本

水筆

鉛筆

筆記本

練習本

水筆

鉛筆

王明

3

5

2

4

4

6

3

3

李東

2

6

3

3

4

8

5

2

張紅

4

7

4

2

5

10

6

4

若筆記本的單價為每本5元;練習本每本2元;水筆每支3元;鉛筆每支1.求三位學生在這些文具上各自花費的金額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線.

1)若過點作與拋物線相交的弦,要使其弦長為2的弦有幾條?并說明理由.

2)試研究過點,且使弦長為2的弦有幾條?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。

A.120種B.240種C.144種D.288種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國全力抗擊“新冠疫情”對全球做出了巨大貢獻,廣大中小學生在這場“戰(zhàn)疫”中也通過各種方式作出了貢獻.某校團委準備組織一次“網(wǎng)上戰(zhàn)疫”的宣傳活動,活動包含4項子活動.現(xiàn)隨機抽取了5個班級中的25名同學進行關于活動方案的問卷調查,其中關于4項子活動的贊同情況統(tǒng)計如下:

班級代碼

A

B

C

D

E

合計

4項子活動全部贊同的人數(shù)

3

4

8

3

2

20

4項子活動不全部贊同的人數(shù)

1

1

0

2

1

5

合計問卷調查人數(shù)

4

5

8

5

3

25

現(xiàn)欲針對4項子活動的活動內(nèi)容作進一步采訪調研,每項子活動采訪1名學生.

1)若每項子活動都從這25名同學中隨機選取1人采訪,求4次采訪中恰有1次采訪的學生對“4項子活動不全部贊同”的概率;

2)若從A班和E班的被問卷調查者中各隨機選取2人作為采訪調研的對象,記選取的4人中“4項子活動全部贊同”的人數(shù)為X,求隨機變量X的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案