函數(shù)的定義域為( )
A.(-∞,2)
B.(2,+∞)
C.(2,3)∪(3,+∞)
D.(2,4)∪(4,+∞)
【答案】分析:根據(jù)“讓解析式有意義”的原則,對數(shù)的真數(shù)大于0,分母不等于0,建立不等式,解之即可.
解答:解:要使原函數(shù)有意義,則
解得:2<x<3,或x>3
所以原函數(shù)的定義域為(2,3)∪(3,+∞).
故選C.
點評:本題主要考查了函數(shù)的定義域及其求法,求定義域常用的方法就是根據(jù)“讓解析式有意義”的原則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+x-
1
4

(1)若函數(shù)的定義域為[0,3],求f(x)的值域;
(2)若定義域為[a,a+1]時,f(x)的值域是[-
1
2
,
1
16
],求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于f(x)=log
12
(x2-2ax+3)

(1)函數(shù)的“定義域為R”和“值域為R”是否是一回事?分別求出實數(shù)a的取值范圍;
(2)結合“實數(shù)a的取何值時f(x)在[-1,+∞)上有意義”與“實數(shù)a的取何值時函數(shù)的定義域為(-∞,1)∪(3,+∞)”說明求“有意義”問題與求“定義域”問題的區(qū)別.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個奇函數(shù)的定義域為{-1,2,a,b},則a+b=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=log3(x2+ax+10)
(1)a=6時,求函數(shù)的值域
(2)若函數(shù)的定義域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=log2[(p-1)x2+2px+3p-2]
(1)若函數(shù)的定義域為R,求實數(shù)p的取值范圍,
(2)若函數(shù)的值域為R,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案