15.sin2(π+α)-cos(π+α)cosα+1的值是( 。
A.2B.1C.2sin2αD.0

分析 利用誘導(dǎo)公式化簡(jiǎn)后,根據(jù)同角三角函數(shù)關(guān)系式即可求值.

解答 解:sin2(π+α)-cos(π+α)cosα+1=sin2α+cos2α+1=2.
故選:A.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角的三角函數(shù)關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.且cosB=-$\frac{1}{2}$.
(Ⅰ)若a=2,b=2$\sqrt{3}$,求角C;
(Ⅱ)求sinA•sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)任意$x∈({0,\frac{π}{2}})$,不等式sinx•f(x)<cosx•f′(x)恒成立,則下列不等式錯(cuò)誤的是( 。
A.$f({\frac{π}{3}})>\sqrt{2}f({\frac{π}{4}})$B.$f({\frac{π}{3}})>2cos1•f(1)$C.$f({\frac{π}{4}})<\sqrt{2}cos1•f(1)$D.$f({\frac{π}{4}})<\frac{{\sqrt{6}}}{2}f({\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.利用三角函數(shù)線求滿足tanα≥$\frac{\sqrt{3}}{3}$的角α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若α為三四象限角則化簡(jiǎn)$\sqrt{\frac{1-cosα}{1+cosα}}$-$\sqrt{\frac{1+cosα}{1-cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.x>5是x>8的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A,B是單位圓O上的動(dòng)點(diǎn),且A,B分別在第一,二象限.C是圓與x軸正半軸的交點(diǎn),△AOB為正三角形,記∠AOC=α
(1)若A點(diǎn)的橫坐標(biāo)為$\frac{3}{5}$,求tan(540°-α)的值;
(2)若tan(α+60°)=-$\frac{3}{4}$,求B、C兩點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)奇函數(shù)f(x)在(-∞,0)上為減函數(shù),且f(2)=0,則$\frac{{f(x)-3f({-x})}}{2x}>0$的解集為( 。
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞.-2)∪(2.+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案