下列說法正確的個數(shù)是(  )
①正切函數(shù)在定義域上單調(diào)遞增;
②函數(shù)f(x)在區(qū)間(a,b)上滿足f(a)f(b)<0,則函數(shù)f(x)在(a,b)上有零點;
f(x)=log2(x+
x2+1
)
的圖象關(guān)于原點對稱;
④若一個函數(shù)是周期函數(shù),那么它一定有最小正周期.
A、0個B、1個C、2個D、3個
考點:命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,簡易邏輯
分析:由正切函數(shù)的圖象可知正確函數(shù)在整個定義域上不單調(diào),有無數(shù)個單調(diào)增區(qū)間;
若f(a)f(b)<0,但函數(shù)在兩端點處不連續(xù),則不一定在(a,b)上有零點;
由定義判斷出f(x)=log2(x+
x2+1
)
是奇函數(shù)說明③正確;
舉例說明④錯誤.
解答: 解:①正切函數(shù)在定義域上單調(diào)遞增,錯誤,正確函數(shù)在整個定義域上不單調(diào),有無數(shù)個單調(diào)增區(qū)間;
②函數(shù)f(x)在區(qū)間(a,b)上滿足f(a)f(b)<0,則函數(shù)f(x)在(a,b)上有零點,錯誤,若函數(shù)在兩端點處不連續(xù),則不一定在(a,b)上有零點;
③函數(shù)f(x)=log2(x+
x2+1
)
的定義域為R,且f(-x)=log2(-x+
(-x)2+1
)
=log2(-x+
x2+1
)
=log2(x+
x2+1
)-1
=-log2(x+
x2+1
)
=-f(x),
∴f(x)為奇函數(shù),圖象關(guān)于原點對稱,正確;
④若一個函數(shù)是周期函數(shù),那么它一定有最小正周期,錯誤,例如常數(shù)函數(shù)f(x)=1是周期函數(shù),但無最小正周期.
∴正確的命題是③.
故選:B.
點評:本題考查了命題的真假判斷與應(yīng)用,考查了函數(shù)的性質(zhì),考查了函數(shù)零點的判定方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形ABCD,及兩條對角線AC、BD,AB=AC=AD=a,BD=DC=CD=b,AB⊥面BCD,垂足為H,求平面ABD與平面BCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-x2,a∈R,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥1時,f(x)≤0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=8x上一點P到直線x=-2的距離是6,則點P到該拋物線焦點的距離是( 。
A、12B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=ax2+bx+c是定義在R上的偶函數(shù),一次函數(shù)g(x)=kx+t是定義在R上的奇函數(shù),則b+t=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2+2a2
x+1(a<0),則函數(shù)f(x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

網(wǎng)絡(luò)時代的到來,很多家庭都接入了網(wǎng)絡(luò),電信局規(guī)定了撥號入網(wǎng)兩種收費方式,用戶可以任選其一:A:計時制:0.05元/分;B:全月制:54元/月(限一部個人住宅電話入網(wǎng)).此外B種上網(wǎng)方式要加收通信費0.02元/分.
(1)用戶某月上網(wǎng)的時間為x小時,兩種收費方式的費用分別為y1(元)、y2(元),寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)在上網(wǎng)時間相同的條件下,請你幫該用戶選擇哪種方式上網(wǎng)更省錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x,x≥0
x2,x<0
,則關(guān)于x的不等式f(x2)>f(4-3x)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與雙曲線x2-y2=2有共同的焦點,且經(jīng)過點M(-3,0)的橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊答案