9.設(shè)$\overrightarrow{a}$=(1,2,-3),$\overrightarrow$=(5,-7,8),則2$\overrightarrow{a}$+$\overrightarrow$=(7,-3,2).

分析 利用空間向量坐標(biāo)運算法則求解.

解答 解:∵$\overrightarrow{a}$=(1,2,-3),$\overrightarrow$=(5,-7,8),
∴2$\overrightarrow{a}$+$\overrightarrow$=(2,4,-6)+(5,-7,8)
=(7,-3,2).
故答案為:(7,-3,2).

點評 本題考查空間向量的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量空間向量坐標(biāo)運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=i(2+3i),則復(fù)數(shù)z的虛部為( 。
A.3B.3iC.2D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若復(fù)數(shù)(m2+i)(1+mi)是純虛數(shù),則實數(shù)m=0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)在定義域R上單調(diào)遞減,且函數(shù)y=f(x-1)的圖象關(guān)于點A(1,0)對稱.若實數(shù)t滿足f(t2-2t)+f(-3)>0,則$\frac{t-1}{t-3}$的取值范圍是 ( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(0,$\frac{2}{3}$)D.($\frac{1}{2}$,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)$f(x)=\fracdbntdxp{{a{x^2}-bx+c}}(a,b,c,d∈R)$的圖象如圖所示,則a:b:c:d=( 。
A.1:6:5:(-8)B.1:6:5:8C.1:(-6):5:8D.1:(-6):5:(-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$|\overrightarrow a|$=$|\overrightarrow b|$=2,且它們的夾角為$\frac{π}{3}$,則$|\overrightarrow a+\overrightarrow b|$=( 。
A.$2\sqrt{3}$B.$3\sqrt{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某廠生產(chǎn)總值連續(xù)兩年持續(xù)增加,第一年的增長率為a,第二年的增長率為b,則該廠這兩年生產(chǎn)總值的年平均增長率為(  )
A.$\frac{a+b}{2}$B.$\sqrt{ab}$C.$\sqrt{(a+1)(b+1)}-1$D.$\sqrt{(a+1)(b+1)}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖是甲,乙兩名同學(xué)5次綜合測評成績的莖葉圖,甲乙兩人中成績較為穩(wěn)定的是甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=-sin2x+sinx+a,
(1)當(dāng)f(x)=0有實數(shù)解時,求a的取值范圍;
(2)若$x∈[\frac{π}{6},\frac{2π}{3}]$,恒有1≤f(x)≤$\frac{17}{4}$,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案