分析 利用誘導(dǎo)公式對所求的關(guān)系式進行化簡,再弦化切即可得答案.
解答 解:∵tanα=2,
∴$\frac{{sin(α+\frac{π}{2})+cos(α-\frac{π}{2})}}{{3sin(\frac{π}{2}-α)-cos(\frac{π}{2}+α)}}$=$\frac{cosα+sinα}{3cosα+sinα}$
=$\frac{1+tanα}{3+tanα}=\frac{1+2}{3+2}=\frac{3}{5}$.
故答案為:$\frac{3}{5}$.
點評 本題考查誘導(dǎo)公式與同角三角函數(shù)基本關(guān)系的運用,“弦”化“切”是關(guān)鍵,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0,-1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B是必然事件 | B. | C∪D是必然事件 | C. | C與D一定互斥 | D. | C與D一定不互斥 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $-\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若A,B,C是平面內(nèi)的三點,則$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$ | |
B. | 若$\overrightarrow{e_1}、\overrightarrow{e_2}$是兩個單位向量,則$\overrightarrow{e_1}=\overrightarrow{e_2}$ | |
C. | 若$\overrightarrow a、\overrightarrow b$是任意兩個向量,則$|{\overrightarrow a+\overrightarrow b}|≤|{\overrightarrow a}|+|{\overrightarrow b}|$ | |
D. | 向量$\overrightarrow{e_1}=(0,0),\overrightarrow{e_2}=(1,-2)$可以作為平面內(nèi)所有向量的一組基底 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com