【題目】已知函數(shù)f(x)= +lnx在(1,+∞)上是增函數(shù),且a>0.
(Ⅰ)求a的取值范圍;
(Ⅱ)若b>0,試說明 <ln < .
【答案】解:(Ⅰ)f′(x)= ,
由f′(x)≥0,且a>0,得ax﹣1≥0,即x ,
∵x∈(1,+∞),∴ ,即a≥1;
(Ⅱ)∵b>0,由(Ⅰ)知,a≥1.
∴ >1,又f(x)= +lnx在(1,+∞)上是增函數(shù),
∴f( )>f(1),即 >0.
化簡得: < ;
ln < <0.
令g(x)=ln(1+x)﹣x(x∈[0,+∞)),則g′(x)= <0.
∴函數(shù)g(x)在[0,+∞)上為減函數(shù).
∴g( )=ln(1+ )=ln ﹣ <g(0)=0.
綜上, <ln <
【解析】(Ⅰ)求出原函數(shù)的導函數(shù),由f′(x)≥0,且a>0,得ax﹣1≥0,即x ,再由x的范圍求得a的范圍;(Ⅱ)b>0,由(Ⅰ)知a≥1,可得 >1,由f(x)= +lnx在(1,+∞)上是增函數(shù),可得f( )>f(1),化簡得到 < ;
由ln < <0.構造輔助函數(shù)g(x)=ln(1+x)﹣x(x∈[0,+∞)),利用導數(shù)判斷函數(shù)g(x)在[0,+∞)上為減函數(shù).由g( )<g(0)得ln < .
【考點精析】利用利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù)對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=1過橢圓C: (a>b>0)的短軸端點,P,Q分別是圓O與橢圓C上任意兩點,且線段PQ長度的最大值為3. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,t)作圓O的一條切線交橢圓C于M,N兩點,求△OMN的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x,y∈R,向量 分別為直角坐標平面內(nèi)x,y軸正方向上的單位向量,若向量 , ,且 .
(Ⅰ)求點M(x,y)的軌跡C的方程;
(Ⅱ)設橢圓 ,P為曲線C上一點,過點P作曲線C的切線y=kx+m交橢圓E于A、B兩點,試證:△OAB的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在R上的導函數(shù)為f′(x),對x∈R有f(x)+f(﹣x)=x2 , 在(0,+∞)上f′(x)﹣x<0,若f(4﹣m)﹣f(m)≥8﹣4m,則實數(shù)m的取值范圍是( )
A.[2,+∞)
B.(﹣∞,2]
C.(﹣∞,2]∪[2,+∞)
D.[﹣2,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)=|x|+2|x+2﹣a|(a∈R).
(1)當a=3時,解不等式g(x)≤4;
(2)令f(x)=g(x﹣2),若f(x)≥1在R上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .若f(x)的最小正周期為4π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的公差為d,且2a1=d,2an=a2n﹣1.
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com