【題目】給出下列四個命題:

1)任意兩個復(fù)數(shù)都不能比較大。唬2為實數(shù)為實數(shù);(3)虛軸上的點對應(yīng)的復(fù)數(shù)都是純虛數(shù);(4)復(fù)數(shù)集與復(fù)平面內(nèi)的所有點所成的集合是一一對應(yīng)的.

其中正確命題的個數(shù)是(

A.1B.2C.3D.4

【答案】A

【解析】

根據(jù)虛數(shù)不能比較大小可知(1)不正確;根據(jù)兩個共軛虛數(shù)的積為實數(shù)可知(2)不正確;根據(jù)原點在虛軸上可知(3)不正確;(4)正確.

解:(1)因為兩個復(fù)數(shù)都是實數(shù)時,可以比較大小.所以(1)不正確;

2)舉反例,當,,所以(2)不正確;

3)坐標原點在虛軸上,但原點對應(yīng)的復(fù)數(shù)是實數(shù),所以(3)不正確;

4)復(fù)數(shù)集與復(fù)平面內(nèi)的所有點所成的集合是一一對應(yīng)的.正確.

所以正確命題的個數(shù)是:1.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),過點作斜率為的直線與圓交于,兩點.

(1)若圓心到直線的距離為,求的值;

(2)求線段中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體、分別是棱AB、BC的中點.

(1)證明四點共面;

(2)直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?/span>13秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.

1)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);

2)設(shè)m,n表示該班某兩位同學(xué)的百米測試成績,且已知求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 y = x3 + x2 在點 P0 處的切線平行于直線

4xy1=0,且點 P0 在第三象限,

P0的坐標;

若直線, l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.

1)求橢圓的方程;

2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標,若不存在,請說明理由;

3)若,交橢圓于點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=lnx+ax2-xx0,aR).

(Ⅰ)討論函數(shù)fx)的單調(diào)性;

(Ⅱ)求證:當a≤0時,曲線y=fx)上任意一點處的切線與該曲線只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案