甲、乙兩個班級進行一門考試,按照學生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:

 

優(yōu)秀

不優(yōu)秀

合計

甲班

10

35

45

乙班

7

38

45

合計

17

73

90

利用獨立性檢驗估計,你認為推斷“成績與班級有關(guān)系”錯誤的概率介于( 。

A.     B.    C.    D.

 

【答案】

B

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某中學將100名髙一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如圖).記成績不低于90分者為“成績優(yōu)秀”.
精英家教網(wǎng)
(Ⅰ)從乙班隨機抽取2名學生的成績,記“成績優(yōu)秀”的個數(shù)為ξ,求ξ的分布列和數(shù)學期望;
(Ⅱ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表,并判斷是否有95%的把握認為:“成績優(yōu)秀”與教學方式有關(guān).
甲班(A方式) 乙班(B方式) 總計
成績優(yōu)秀
成績不優(yōu)秀
總計
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可寫成x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如下.記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)在乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的兩個均“成績優(yōu)秀”的概率;
(Ⅱ)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有90%的把握認為:“成績優(yōu)秀”與教學方式有關(guān).
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可寫成x2=
n(n11 n22-n12n21)2
n1+ n2+n+1n+2

P(k2≥K) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如圖).記成績不低于90分者為“成績優(yōu)秀”.
(1)從乙班隨機抽取2名學生的成績,記“成績優(yōu)秀”的個數(shù)為ξ,求ξ的分布列和數(shù)學期望;
(2)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表,并判斷是否有95%的把握認為:“成績優(yōu)秀”與教學方式有關(guān)
甲班(A方式) 乙班(B方式) 總計
成績優(yōu)秀
成績不優(yōu)秀
總計
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P≥(k2≥k) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.814 5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩個班級進行一門考試,按照學生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計后,得出如下的列聯(lián)表:
優(yōu)秀 不優(yōu)秀 總計
甲班 10 35 45
乙班 7 38 45
總計 17 73 90
(1)畫出列聯(lián)表的二維條形圖,并通過條形圖判斷成績是否與班級有關(guān);
(2)利用列聯(lián)表的獨立性檢驗估計,認為“成績與班級有關(guān)系”犯錯誤的概率是多少?是否有99%的把握認為“成績與班級有關(guān)系”
附表:
P(K2≥k0 0.10 0.010 0.001
k0 2.706 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表:已知從全部210人中隨機抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請完成下面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認為“成績與班級有關(guān)”;
(Ⅱ)從全部210人中有放回抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨立的,求ξ的分布列及數(shù)學期望Eξ.
優(yōu)秀 非優(yōu)秀 總計
甲班 20
乙班 60
合計 210
附:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
P=(x2≥k) 0.05 0.01
k 3.841 6.635

查看答案和解析>>

同步練習冊答案