滿足a,b∈{-1,0,1,2},且關(guān)于x的方程ax2+2x+b=0有實數(shù)解的有序數(shù)對的個數(shù)為( )
A.14
B.13
C.12
D.10
【答案】分析:由于關(guān)于x的方程ax2+2x+b=0有實數(shù)根,所以分兩種情況:(1)當a≠0時,方程為一元二次方程,那么它的判別式大于或等于0,由此即可求出a的取值范圍;(2)當a=0時,方程為2x+b=0,此時一定有解.
解答:解:(1)當a=0時,方程為2x+b=0,此時一定有解;
此時b=-1,0,1,2;即(0,-1),(0,0),(0,1),(0,2);四種.
(2)當a≠0時,方程為一元二次方程,
∴△=b2-4ac=4-4ab≥0,
∴ab≤1.所以a=-1,1,2此時a,b的對數(shù)為(-1,0),(-1,2),(-1,-1),(-1,1),(1,-1),(1,0),(1,1);(2,-1),(2,0),共9種,
關(guān)于x的方程ax2+2x+b=0有實數(shù)解的有序數(shù)對的個數(shù)為13種,
故選B.
點評:本題考查了一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根,在解題時要注意分類討論思想運用.考查分類討論思想.