【題目】光線從點(diǎn)射出,到軸上的點(diǎn)后,被軸反射到軸上的點(diǎn),又被軸反射,這時(shí)反射線恰好過點(diǎn).
(1)求所在直線的方程;
(2)過點(diǎn)且斜率為的直線與,軸分別交于、,過、作直線的垂線,垂足為、,求線段長度的最小值.
【答案】(1);(2).
【解析】
(1)根據(jù)光線的反射原理,點(diǎn)關(guān)于軸對(duì)稱點(diǎn)以及點(diǎn)關(guān)于軸對(duì)稱點(diǎn)均在在直線上,即可求解;
(2)先求出直線的點(diǎn)斜式方程,進(jìn)而得到坐標(biāo),根據(jù)已知可得,為兩平行線的距離,求出直線方程,得到兩平行線的距離,利用基本不等式即可求解.
(1)點(diǎn)關(guān)于軸對(duì)稱為,
點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為,
直線經(jīng)過,兩點(diǎn),
故直線,
即為所求的直線方程.
(2)設(shè)的方程為,
令,令
即,.
從而可得直線和的方程分別為
和,
又,為兩平行線的距離,
,∴.
當(dāng)且僅當(dāng)等號(hào)成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某電視娛樂節(jié)目的游戲活動(dòng)中,每人需完成A、B、C三個(gè)項(xiàng)目.已知選手甲完成A、B、C三個(gè)項(xiàng)目的概率分別為、、.每個(gè)項(xiàng)目之間相互獨(dú)立.
(1)選手甲對(duì)A、B、C三個(gè)項(xiàng)目各做一次,求甲至少完成一個(gè)項(xiàng)目的概率.
(2)該活動(dòng)要求項(xiàng)目A、B 各做兩次,項(xiàng)目C做三次.若兩次項(xiàng)目A均完成,則進(jìn)行項(xiàng)目B,并獲得積分a;兩次項(xiàng)目B均完成,則進(jìn)行項(xiàng)目C,并獲積分3a;三次項(xiàng)目C只要兩次成功,則該選手闖關(guān)成功并獲積分6a(積分不累計(jì)),且每個(gè)項(xiàng)目之間互相獨(dú)立.用X表示選手甲所獲積分的數(shù)值,寫出X的分布列并求數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體育公司對(duì)最近6個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表:
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請求出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購,兩款車擴(kuò)大市場,,兩款車各100輛的資料如表:
平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命都是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的期望值作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0且a≠1).
(1)若f(x)為定義域上的增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令a=e,設(shè)函數(shù),且g(x1)+g(x2)=0,求證:x1+x2≥2+.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線與圓O:相切.
(1)直線l過點(diǎn)(2,1)且截圓O所得的弦長為,求直線l的方程;
(2)已知直線y=3與圓O交于A,B兩點(diǎn),P是圓上異于A,B的任意一點(diǎn),且直線AP,BP與y軸相交于M,N點(diǎn).判斷點(diǎn)M、N的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月,兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中,兩種支付方式都不使用的有5人,樣本中僅使用和僅使用的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | 大于2000 | ||
僅使用 | 18人 | 9人 | 3人 |
僅使用 | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月,兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用和僅使用的學(xué)生中各隨機(jī)抽取1人,以表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求的分布列和數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在一個(gè)周期內(nèi)的圖象如下圖所示.
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列滿足:,.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com