【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.
(1)求證:平面平面;
(2)若,求二面角的大小.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,,點()在直線y = x上,
(Ⅰ)計算a2,a3,a4的值;
(Ⅱ)令bn=an+1﹣an﹣1,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項和,是否存在實數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與短軸的兩個端點是正三角形的三個項點,點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)不過原點且斜率為的直線與橢圓交于不同的兩點,線段的中點為,直線與橢圓交于,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角為,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻總 長度為米,如何圍可使得三角形地塊的面積最大?
(2)已知段圍墻高米,段圍墻高米,造價均為每平方米元.若圍圍墻用了元,問如何圍可使竹籬笆用料最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)單調(diào)遞增區(qū)間;
(3)若存在,使得(是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的左右焦點分別為,,點滿足.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于兩點,若直線與圓相交于,兩點,且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 在一個特定時段內(nèi),以點E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東且與點A相距40海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點A北偏東+(其中sin=,)且與點A相距10海里的位置C.
(I)求該船的行駛速度(單位:海里/小時);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會進入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線被圓所截得的弦長為8.
(1)求圓的方程;
(2)若直線與圓切于點,當直線與軸正半軸,軸正半軸圍成的三角形面積最小時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列結(jié)論:
動點分別到兩定點(-3,0)、(3,0) 連線的斜率之乘積為,設(shè)的軌跡為曲線,分別為曲線的左、右焦點,則下列說法中:
(1)曲線的焦點坐標為;
(2)當時,的內(nèi)切圓圓心在直線上;
(3)若,則;
(4)設(shè),則的最小值為;
其中正確的序號是:_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com