【題目】已知雙曲線 與雙曲線 的離心率相同,且雙曲線C2的左、右焦點分別為F1 , F2 , M是雙曲線C2一條漸近線上的某一點,且OM⊥MF2 , ,則雙曲線C2的實軸長為(
A.4
B.
C.8
D.

【答案】D
【解析】解:雙曲線 中,a1= ,c1= =2 ,則離心率e= = = , 即c= a,則b2=c2﹣a2= a2 , 得b= a,即 = ,
設(shè)雙曲線的漸近線為y= x,即bx﹣ay=0,
則右焦點F2
∵OM⊥MF2 ,
∴MF2= =
則漸近線y= x= x,則漸近線的傾斜角∠MOF2=30°,∠OF2M=60°,
則OF2=2MF2 , 即c=2b,
則三角形的面積 = OF2MF2sin60°= ×b2b = b2 ,
則b2=16,則a2=3b2=48,則a=4 ,
則2a=
即雙曲線C2的實軸長為 ,
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,與雙曲線x2﹣y2=1的漸近線有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(
A. + =1
B. + =1
C. + =1
D. + =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知圓的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線的普通方程和圓的極坐標(biāo)方程;

(2)求直線與圓的交點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)棱底面的中點,求證:

(1)平面 ;

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形,,平面.

)求證:平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,函數(shù).

(1)求函數(shù)的對稱中心;

(2)設(shè)銳角三個內(nèi)角所對的邊分別為,若和c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.

(1)若日均收看該體育節(jié)目時間在內(nèi)的觀眾中有兩名女性,現(xiàn)從日均收看時間在內(nèi)的觀眾中抽取兩名進(jìn)行調(diào)查,求這兩名觀眾恰好一男一女的概率;

(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯概率不超過的前提下認(rèn)為是體育迷與性別有關(guān)系嗎?

附表及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值,且在處的切線的斜率為-3.(Ⅰ)求的解析式;

(Ⅱ)若過點A(2,)可作曲線的三條切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習(xí)冊答案