給出下列四個(gè)命題:
①四邊形是平面圖形;
②有三個(gè)共同點(diǎn)的兩個(gè)平面重合;
③兩兩相交的三條直線必在同一平面內(nèi);
④三角形必是平面圖形.
其中正確的命題是
 
(填寫所有正確命題的序號(hào)).
考點(diǎn):命題的真假判斷與應(yīng)用
專題:閱讀型,簡易邏輯
分析:直接由空間中的點(diǎn)、線、面間的關(guān)系,結(jié)合三個(gè)公理及其推論逐一核對四個(gè)選項(xiàng)得答案.
解答: 解:對于①,∵四邊形有空間四邊形,
∴四邊形不一定是平面圖形,命題①錯(cuò)誤;
對于②,若三個(gè)公共點(diǎn)在一條直線上,兩個(gè)平面可以相交,∴命題②錯(cuò)誤;
對于③,若兩兩相交的三條直線共點(diǎn),則三條直線不一定在同一平面內(nèi);
對于④,如圖,任意三角形兩邊相交,不妨設(shè)AB∩BC=B,

∴AB、BC確定平面α,
∵AB?α,A∈AB,
∴A∈α.
BC?α,C∈BC,
∴C∈α.
∴AC?α.
∴三角形必是平面圖形.
∴其中正確的命題是④.
故答案為:④.
點(diǎn)評:本題考查了命題的真假判斷與應(yīng)用,考查了學(xué)生的空間想象能力和思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,已知⊙O的直徑AB=4,點(diǎn)C、D為⊙O上兩點(diǎn),且∠CAB=45°,∠DAB=60°,F(xiàn)為弧BC的中點(diǎn).將⊙O沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直(如圖2).
(Ⅰ)求證:OF∥AC;
(Ⅱ)在弧BD上是否存在點(diǎn)G,使得FG∥平面ACD?若存在,試指出點(diǎn)G的位置;若不存在,請說明理由;
(Ⅲ)求二面角C-AD-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)數(shù)x使以
2x+4
+
1-x
>a成立,則常數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“a>3或a≤0”為假命題,則a的取值范圍為:(0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若p,q為兩個(gè)命題,則“p且q為真”是“p或q為真”的必要不充分條件.
②若p為:?x∈R,x2+2x≤0,則¬p為:?x∈R,x2+2x>0.
③命題“?x,x2-2x+3>0”的否命題是“?x,x2-2x+3<0”.
④命題“若¬p則q”的逆否命題是“若p,則¬q”.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),有下列命題:其中正確的序號(hào)為
 

①若f(x1)=f(x2)=0,則x1-x2必是π的整數(shù)倍;
②y=f(x)的表達(dá)式可改寫為y=4cos(2x-
π
6
);
③y=f(x)的圖象關(guān)于點(diǎn)(-
π
3
,0)對稱;
④y=f(x)的圖象向右平移
12
個(gè)單位后的圖象所對應(yīng)的函數(shù)是偶函數(shù);
⑤當(dāng)x=-
12
+kπ,k∈Z
時(shí),函數(shù)有最小值-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是
 
.(寫出所有正確命題的序號(hào))
①函數(shù)f(x)=cos2x-2
3
sinxcosx
在區(qū)間[-
π
6
π
3
]
上是單調(diào)遞增的;
②在△ABC中,BC=1,B=60°,當(dāng)△ABC的面積為
3
時(shí),AB=4;
③若
a
為非零向量,且
a
b
=0,則滿足條件的向量
b
有無數(shù)個(gè);
④已知
π
2
<α<β<π
,且sinα=
5
5
,sinβ=
10
10
,則α+β=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①必然事件的概率為1;
②如果某種彩票的中獎(jiǎng)概率為
1
10
,那么買1000張這種彩票一定能中獎(jiǎng);
③某事件的概率為1.1;
④互斥事件一定是對立事件;
其中正確的說法是( 。
A、①②③④B、①C、③④D、①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線x=m與函數(shù)f(x)=x2+4,g(x)=2lnx的圖象分別交于點(diǎn)M、N,則當(dāng)|MN|達(dá)到最小時(shí)m的值為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

同步練習(xí)冊答案