【題目】已知圓的方程為x2+y2﹣6x=0,過點(1,2)的該圓的三條弦的長a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有6個編號不同的黑球和3個編號不同的白球,這9個球的大小及質(zhì)地都相同,現(xiàn)從該袋中隨機摸取3個球,則這三個球中恰有兩個黑球和一個白球的方法總數(shù)是 , 設(shè)摸取的這三個球中所含的黑球數(shù)為X,則P(X=k)取最大值時,k的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線m,n和兩個不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則( )
A.m∥n
B.m⊥n
C.m∥l
D.n⊥l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點,以A為圓心,AD為半徑的半圓分別交BA及其延長線于點M,N,點P在 上運動(如圖).若 ,其中λ,μ∈R,則2λ﹣5μ的取值范圍是( )
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點,且g(x)≤0恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“ ∥ ”是“| |= ”的什么條件
(2)設(shè)命題p:若 ⊥ ,則m=﹣19,命題q:若集合A的子集個數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+ )﹣2cos2B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的v值為( )
A.9×210﹣2
B.9×210+2
C.9×211+2
D.9×211﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ
(Ⅰ)求曲線C1的普通方程和C2的直角坐標方程;
(Ⅱ)已知曲線C3的極坐標方程為θ=α,0<α<π,ρ∈R,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4 ,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com