已知單位向量
i
j
滿足(2
j
-
i
i
,則
i
j
的夾角為
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:利用(2
j
-
i
i
,可得
i
•(2
j
-
i
)
=0,再利用數(shù)量積運算即可得出.
解答: 解:∵(2
j
-
i
i
,∴
i
•(2
j
-
i
)
=0,
2
i
j
-
i
2
=0
,
2|
i
| |
j
|cos<
i
,
j
-1=0,即cos<
i
j
=
1
2

i
,
j
=
π
3

故答案為:
π
3
點評:本題考查了向量垂直與數(shù)量積的關系、數(shù)量積運算及其夾角,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+bx+c與y=x交于A,B兩點且|AB|=3
2
,奇函數(shù)g(x)=
x2+c
x+d
,當x>0時,f(x)與g(x)都在x=x0取到最小值.
(1)求f(x),g(x)的解析式;
(2)若y=x與y=k+
1
2
f(x)
圖象恰有兩個不同的交點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos(2x-
π
3
),cosx+sinx),
b
=(1,cosx-sinx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知f(A)=
3
2
,a=2,B=
π
3
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O過橢圓
x2
6
+
y2
2
=1
的兩焦點且關于直線x-y+1=0對稱,則圓O的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,M為不等式組
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的區(qū)域上一動點,則直線OM斜率的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足條件
x≥0
y≤x
2x+y-6≤0
,若z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

π
2
0
2
sin(x+
π
4
)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知某個幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸,可得這個幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)為( 。
①已知-1≤x+y≤1,1≤x-y≤3,則3x-y的范圍是[1,7];
②若不等式2x-1>m(x2-1)對滿足|m|≤2的所有m都成立,則x的范圍是(
7
-1
2
,
3
+1
2
);
③如果正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是[8,+∞);
a=log
1
3
2,b=log
1
2
3,c=(
1
3
)0.5
大小關系是a>b>c.
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案