(本題滿(mǎn)分12分)
已知函數(shù).
(1)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;
(2)若函數(shù)有三個(gè)零點(diǎn),求的值;
(3)若存在,使得,試求的取值范圍。

(1)證明:,由于所以故函數(shù)上單調(diào)遞增(2)(3)

解析試題分析:(1)
由于,故當(dāng)時(shí),,所以
故函數(shù)上單調(diào)遞增-----------------------------------4分
(2)當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/5/bgi3c2.png" style="vertical-align:middle;" />,且在R上單調(diào)遞增,
有唯一解
所以的變化情況如下表所示:

x

0



0


遞減
極小值
遞增
又函數(shù)有三個(gè)零點(diǎn),所以方程有三個(gè)根,
,所以,解得 -----------8分
(3)因?yàn)榇嬖?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/3/1a2xp4.png" style="vertical-align:middle;" />,使得
所以當(dāng)時(shí),
由(Ⅱ)知,上遞減,在上遞增,
所以當(dāng)時(shí),,
,
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/7/18cav4.png" style="vertical-align:middle;" />(當(dāng)時(shí)取等號(hào)),
所以上單調(diào)遞增,而,
所以當(dāng)時(shí),;當(dāng)時(shí),
也就是當(dāng)時(shí),;當(dāng)時(shí),
①當(dāng)時(shí),由
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分為12分)
已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線(xiàn)的斜率是
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)處取得極值,記點(diǎn),證明:線(xiàn)段與曲線(xiàn)存在異于的公共點(diǎn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)設(shè)函數(shù).
⑴ 求的極值點(diǎn);
⑵ 若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
⑶ 已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù)上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分16分)
已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)處的切線(xiàn)方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),當(dāng)時(shí),;當(dāng)時(shí),.
(1)求在[0,1]內(nèi)的值域;
(2)為何值時(shí),不等式在[1,4]上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分15分)過(guò)曲線(xiàn)C:外的點(diǎn)A(1,0)作曲線(xiàn)C的切線(xiàn)恰有兩條,
(Ⅰ)求滿(mǎn)足的等量關(guān)系;
(Ⅱ)若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)設(shè)函數(shù)f(x)=x2+ex-xex.(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案