已知數(shù)列{an}滿足a1>0,an+1=2-|an|,n∈N*
(1)若a1,a2,a3成等比數(shù)列,求a1的值;
(2)是否存在a1,使數(shù)列{an}為等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

(1)(2)

解析試題分析:(1)首先利用遞推公式把都用表示,再根據(jù)成等比數(shù)列,列方程解出的值,注意根據(jù)絕對值的定義要對的取值范圍分類計論.
(2)對于這類開放性問題,處理的策略就是先假設(shè)存在a1,使數(shù)列{an}為等差數(shù)列,與(1)類似,根據(jù)成等差數(shù)列,有,從面得到關(guān)于的方程,方程若有解則存在,否則可認(rèn)為不存在a1,使數(shù)列{an}為等差數(shù)列.
試題解析:(1)∵a1>0,∴a2=2-|a1|=2-a1,a3=2-|a2|=2-|2-a1|.
當(dāng)0<a1≤2時,a3=2-(2-a1)=a1,∴a12=(2-a1)2,解得a1=1.
當(dāng)a1>2時,a3=2-(a1-2)=4-a1,∴a1(4-a1)=(2-a1)2,解得a1=2-(舍去)或a1=2+
綜上可得a1=1或a1=2+.                    6分
(2)假設(shè)這樣的等差數(shù)列存在,則
由2a2=a1+a3,得2(2-a1)=a1+(2-|2-a1|),即|2-a1|=3a1-2.
當(dāng)a1>2時,a1-2=3a1-2,解得a1=0,與a1>2矛盾;
當(dāng)0<a1≤2時,2-a1=3a1-2,解得a1=1,從而an=1(n∈N*),此時{an}是一個等差數(shù)列;
綜上可知,當(dāng)且僅當(dāng)a1=1時,數(shù)列{an}為等差數(shù)列.         12分
考點(diǎn):1、等差數(shù)列、等比數(shù)列的定義;2、分類討論的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的首項(xiàng)為a1=1,其前n項(xiàng)和為Sn,且對任意正整數(shù)n有n,an,Sn成等差數(shù)列.
(1)求證:數(shù)列{Sn+n+2}成等比數(shù)列.
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3a3,S5a5S4a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)TnSn(n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知n∈N*,數(shù)列{dn}滿足dn,數(shù)列{an}滿足and1d2d3+…+d2n,又知在數(shù)列{bn}中,b1=2,且對任意正整數(shù)m,n,.
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)將數(shù)列{bn}中的第a1項(xiàng),第a2項(xiàng),第a3項(xiàng),…,第an項(xiàng),…刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2 013項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,數(shù)列滿足:
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式
(3)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,a16a17a18a9=-36,其前n項(xiàng)和為Sn.
(1)求Sn的最小值,并求出Sn取最小值時n的值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是公差不為零的等差數(shù)列,,且的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,,試問當(dāng)為何值時,最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式:
(2)設(shè),求數(shù)列{}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請說明理由;
(3)若,,求證:使得,成等差數(shù)列的點(diǎn)列在某一直線上.

查看答案和解析>>

同步練習(xí)冊答案