A.存在k∈R使函數(shù)y=在(0,+∞)上不是單調(diào)遞減
B.存在k∈R使函數(shù)y=在(0,+∞)上單調(diào)遞增
C.對任意實數(shù)k∈R函數(shù)y=在(0,+∞)上單調(diào)遞減
D.對任意實數(shù)k∈R函數(shù)y=在(0,+∞)上不是單調(diào)遞減
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
c |
a |
| ||
2 |
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
RP |
PF2 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
3 |
π |
12 |
5π |
12 |
查看答案和解析>>
科目:高中數(shù)學 來源:上海市盧灣區(qū)2010屆高三第二次模擬考試數(shù)學理科試題 題型:044
已知橢圓C:(a>b>0),其焦距為2c,若(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:(a>b>0)的右焦點為F2(c,0),P為橢圓C上的
任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內(nèi)切圓過焦點F1、F2.
試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市盧灣區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com