命題“存在k∈R,使函數(shù)y=在(0,+∞)上單調(diào)遞減”的否定是(    )

A.存在k∈R使函數(shù)y=在(0,+∞)上不是單調(diào)遞減

B.存在k∈R使函數(shù)y=在(0,+∞)上單調(diào)遞增

C.對任意實數(shù)k∈R函數(shù)y=在(0,+∞)上單調(diào)遞減

D.對任意實數(shù)k∈R函數(shù)y=在(0,+∞)上不是單調(diào)遞減

思路分析:存在命題的否定式全稱命題.

答案:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點為F2(c,0),P為橢圓C上的任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內(nèi)切圓過焦點F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①“x=2”是“x2=4”的充分不必要條件;
②設A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,則實數(shù)t的取值范圍為[3,+∞);
③若log2x+logx2≥2,則x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命題P:對任意的x∈R,函數(shù)y=cos(2x-
π
3
)
的遞減區(qū)間為[kπ-
π
12
,kπ+
12
](k∈Z)
,命題q:存在x∈R,使tanx=1,則命題“p且q”是真命題.
其中真命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源:上海市盧灣區(qū)2010屆高三第二次模擬考試數(shù)學理科試題 題型:044

已知橢圓C:(a>b>0),其焦距為2c,若(≈0.618),則稱橢圓C為“黃金橢圓”.

(1)求證:在黃金橢圓C:(a>b>0)中,a、b、c成等比數(shù)列.

(2)黃金橢圓C:(a>b>0)的右焦點為F2(c,0),P為橢圓C上的

任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足?若存在,求直線l的斜率k;若不存在,請說明理由.

(3)在黃金橢圓中有真命題:已知黃金橢圓C:(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內(nèi)切圓過焦點F1、F2

試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市盧灣區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:(a>b>0),其焦距為2c,若(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:(a>b>0)的右焦點為F2(c,0),P為橢圓C上的任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內(nèi)切圓過焦點F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.

查看答案和解析>>

同步練習冊答案