【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2015年11月11日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市100名網(wǎng)友的網(wǎng)購金額情況,得到如圖頻率分布直方圖.
(1)估計直方圖中網(wǎng)購金額的中位數(shù);
(2)若規(guī)定網(wǎng)購金額超過15千元的顧客定義為“網(wǎng)購達人”,網(wǎng)購金額不超過15千元的顧客定義為“非網(wǎng)購達人”;若以該網(wǎng)店的頻率估計全市“非網(wǎng)購達人”和“網(wǎng)購達人”的概率,從全市任意選取3人,則3人中“非網(wǎng)購達人”與“網(wǎng)購達人”的人數(shù)之差的絕對值為X,求X的分布列與數(shù)學(xué)期望.

【答案】
(1)解:設(shè)中位數(shù)是x,

則由頻率分布直方圖的性質(zhì)得:

5×0.04+(x﹣10)×0.1=0.5,

解得x=13.

∴估計直方圖中網(wǎng)購金額的中位數(shù)為13.


(2)解:依題意,從全市任取的三人中“網(wǎng)購達人”的人數(shù)服從B(3,0.3),

所以X可能取值為1,3,

所以X的分布列為

X

1

3

P

0.63

0.37

數(shù)學(xué)期望EX=1×0.63+3×0.37=1.74


【解析】(1)設(shè)中位數(shù)是x,由頻率分布直方圖的性質(zhì)能估計直方圖中網(wǎng)購金額的中位數(shù).(2)依題意,從全市任取的三人中“網(wǎng)購達人”的人數(shù)服從B(3,0.3),所以X可能取值為1,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
【考點精析】解答此題的關(guān)鍵在于理解離散型隨機變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的通項公式為an=2n﹣1(n∈N*),且a2 , a5分別是等比數(shù)列{bn}的第二項和第三項,設(shè)數(shù)列{cn}滿足cn= ,{cn}的前n項和為Sn
(1)求數(shù)列{bn}的通項公式;
(2)是否存在m∈N* , 使得Sm=2017,并說明理由
(3)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個命題: ①已知隨機變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2ab>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( x的零點個數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函數(shù).
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x﹣1),g(x)=loga(6﹣2x)(a>0且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖(N∈N*),那么輸出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC= AA1=1,D是棱AA1上的點,DC1⊥BD
(Ⅰ)求證:D為AA1中點;
(Ⅱ)求直線BC1與平面BDC所成角正弦值大小;
(Ⅲ)在△ABC邊界及內(nèi)部是否存在點M,使得B1M⊥面BDC,存在,說明M位置,不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 + =1(b>0)的左、右焦點分別為F1、F2 , 點F2也為拋物線C2:y2=8x的焦點,過點F2的直線l交拋物線C2于A,B兩點.
(Ⅰ)若點P(8,0)滿足|PA|=|PB|,求直線l的方程;
(Ⅱ)T為直線x=﹣3上任意一點,過點F1作TF1的垂線交橢圓C1于M,N兩點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為偶函數(shù),當x<0時,f(x)=ln(﹣x)﹣ax.若直線y=x與曲線y=f(x)至少有兩個交點,則實數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案