【題目】設(shè)函數(shù),下述四個(gè)結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個(gè)零點(diǎn)

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①②③C.①③④D.②③④

【答案】B

【解析】

根據(jù)函數(shù)相關(guān)知識(shí)對(duì)各選項(xiàng)逐個(gè)判斷,即可得出其真假.

因?yàn)楹瘮?shù)fx)定義域?yàn)?/span>R,而且f(﹣x)=cos|2x|+|sinx|fx),所以fx)是偶函數(shù),①正確;

因?yàn)楹瘮?shù)ycos|2x|的最小正周期為πy|sinx|的最小正周期為π,所以fx)的最小正周期為π,②正確;

fx)=cos|2x|+|sinx|cos2x+|sinx|12sin2x+|sinx|=﹣2|sinx|2,而|sinx|[0,1],所以當(dāng)|sinx|1時(shí),fx)的最小值為0,③正確;

由上可知fx)=0可得12sin2x+|sinx|0,解得|sinx|1|sinx|(舍去)

因此在[0,2π]上只有xx,所以④不正確.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線(xiàn)的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.

(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),且,求直線(xiàn)的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20201月,教育部《關(guān)于在部分高校開(kāi)展基礎(chǔ)學(xué)科招生改革試點(diǎn)工作的意見(jiàn)》印發(fā),自2020年起,在部分高校開(kāi)展基礎(chǔ)學(xué)科招生改革試點(diǎn)(也稱(chēng)強(qiáng)基計(jì)劃.強(qiáng)基計(jì)劃聚焦高端芯片與軟件智能科技新材料先進(jìn)制造和國(guó)家安全等關(guān)鍵領(lǐng)域以及國(guó)家人才緊缺的人文社會(huì)科學(xué)領(lǐng)域,選拔培養(yǎng)有志于服務(wù)國(guó)家重大戰(zhàn)略需求且綜合素質(zhì)優(yōu)秀或基礎(chǔ)學(xué)科拔尖的學(xué)生.新材料產(chǎn)業(yè)是重要的戰(zhàn)略性新興產(chǎn)業(yè),下圖是我國(guó)2011-2019年中國(guó)新材料產(chǎn)業(yè)市場(chǎng)規(guī)模及增長(zhǎng)趨勢(shì)圖.其中柱狀圖表示新材料產(chǎn)業(yè)市場(chǎng)規(guī)模(單位:萬(wàn)億元),折線(xiàn)圖表示新材料產(chǎn)業(yè)市場(chǎng)規(guī)模年增長(zhǎng)率(.

1)求2015年至2019年這5年的新材料產(chǎn)業(yè)市場(chǎng)規(guī)模的平均數(shù);

2)從2012年至2019年中隨機(jī)挑選一年,求該年新材料產(chǎn)業(yè)市場(chǎng)規(guī)模較上一年的年增加量不少于6000億元的概率;

3)由圖判斷,從哪年開(kāi)始連續(xù)三年的新材料產(chǎn)業(yè)市場(chǎng)規(guī)模年增長(zhǎng)率的方差最大.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿(mǎn)足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)寫(xiě)出曲線(xiàn)的極坐標(biāo)方程,并求出曲線(xiàn)公共弦所在直線(xiàn)的極坐標(biāo)方程;

2)若射線(xiàn)與曲線(xiàn)交于兩點(diǎn),與曲線(xiàn)交于點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為2,分別為的中點(diǎn),則以下說(shuō)法錯(cuò)誤的是(

A.平面截正方體所的截面周長(zhǎng)為

B.存在上一點(diǎn)使得平面

C.三棱錐體積相等

D.存在上一點(diǎn)使得平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:

(1)估計(jì)該校男生的人數(shù);并求出

(2)估計(jì)該校學(xué)生身高在之間的概率;

(3)從樣本中身高在之間的女生中任選2人,求至少有1人身高在之間的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一塊地皮,其中 是直線(xiàn)段,曲線(xiàn)段是拋物線(xiàn)的一部分,且點(diǎn)是該拋物線(xiàn)的頂點(diǎn), 所在的直線(xiàn)是該拋物線(xiàn)的對(duì)稱(chēng)軸.經(jīng)測(cè)量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來(lái)建造草坪,其中點(diǎn)在曲線(xiàn)段上,點(diǎn) 在直線(xiàn)段上,點(diǎn)在直線(xiàn)段上,設(shè)km,矩形草坪的面積為km2

(1)求,并寫(xiě)出定義域;

(2)當(dāng)為多少時(shí),矩形草坪的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案