精英家教網 > 高中數學 > 題目詳情
設數列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實數,且c≠0.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設a=
1
2
,c=
1
2
,bn=n(1-an)(n∈N*)
,求數列{bn}的前n項和Sn
(Ⅰ)∵an+1=can+1-c,an+1-1=c(an-1),
∴當a1=a≠1時,{an-1}是首項為a-1,公比為c的等比數列
∴an-1=(a-1)cn-1
當a=1時,an=1仍滿足上式.
∴數列{an-1}的通項公式為an=(a-1)cn-1+1(n∈N*);
(Ⅱ)由(1)得,當a=
1
2
,c=
1
2
時,
bn=n(1-an)=n{1-[1-(
1
2
)n]}=n(
1
2
)n

Sn=b1+b2++bn=
1
2
+2×(
1
2
)2+3×(
1
2
)3++n×(
1
2
)n
1
2
Sn=(
1
2
)2+2×(
1
2
)3++n×(
1
2
)n+1

兩式作差得
1
2
Sn=
1
2
+(
1
2
)2++(
1
2
)n-n×(
1
2
)n+1

Sn=1+
1
2
+(
1
2
)2++(
1
2
)n-1-n×(
1
2
)n

=
1-(
1
2
)
n
1-
1
2
-n×(
1
2
)n=2×(1-
1
2n
)-
n
2n

Sn=2-
n+2
2n
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數列{an}的通項公式為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•日照一模)若數列{bn}:對于n∈N*,都有bn+2-bn=d(常數),則稱數列{bn}是公差為d的準等差數列.如:若cn=
4n-1,當n為奇數時
4n+9,當n為偶數時.
則{cn}
是公差為8的準等差數列.
(I)設數列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準等差數列,并求其通項公式:
(Ⅱ)設(I)中的數列{an}的前n項和為Sn,試研究:是否存在實數a,使得數列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•日照一模)若數列{bn}:對于n∈N*,都有bn+2-bn=d(常數),則稱數列{bn}是公差為d的準等差數列.如數列cn:若cn=
4n-1,當n為奇數時
4n+9,當n為偶數時
,則數列{cn}是公差為8的準等差數列.設數列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準等差數列;
(Ⅱ)求證:{an}的通項公式及前20項和S20

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數列{cn}的前n項和Sn為( 。
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=( 。

查看答案和解析>>

同步練習冊答案