【題目】已知f(x)= (ax﹣ax)(a>0且a≠1).
(1)判斷f(x)的奇偶性.
(2)討論f(x)的單調(diào)性.
(3)當(dāng)x∈[﹣1,1]時(shí),f(x)≥b恒成立,求b的取值范圍.

【答案】
(1)解:∵f(x)= ,

所以f(x)定義域?yàn)镽,

又f(﹣x)= (ax﹣ax)=﹣ (ax﹣ax)=﹣f(x),

所以函數(shù)f(x)為奇函數(shù)


(2)解:任取x1<x2

則f(x2)﹣f(x1)= (ax2﹣ax1)(1+a﹣(x1+x2

∵x1<x2,且a>0且a≠1,1+a﹣(x1+x2>0

①當(dāng)a>1時(shí),a2﹣1>0,ax2﹣ax1>0,則有f(x2)﹣f(x1)>0,

②當(dāng)0<a<1時(shí),a2﹣1<0.,ax2﹣ax1<0,則有f(x2)﹣f(x1)>0,

所以f(x)為增函數(shù)


(3)解:當(dāng)x∈[﹣1,1]時(shí),f(x)≥b恒成立,

即b小于等于f(x)的最小值,

由(2)知當(dāng)x=﹣1時(shí),f(x)取得最小值,最小值為 )=﹣1,

∴b≤﹣1.

求b的取值范圍(﹣∞,﹣1]


【解析】(1)由函數(shù)的解析式可求函數(shù)的定義域,先證奇偶性:代入可得f(﹣x)=﹣f(x),從而可得函數(shù)為奇函數(shù);(2)再證單調(diào)性:利用定義任取x1<x2 , 利用作差比較f(x1)﹣f(x2)的正負(fù),從而確當(dāng)f(x1)與f(x2)的大小,進(jìn)而判斷函數(shù)的單調(diào)性;(3)對(duì)一切x∈[﹣1,1]恒成立,轉(zhuǎn)化為b小于等于f(x)的最小值,利用(2)的結(jié)論求其最小值,從而建立不等關(guān)系解之即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計(jì)算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)閇3,6],則函數(shù)y= 的定義域?yàn)椋?/span>
A.[ ,+∞)
B.[ ,2)
C.( ,+∞)
D.[ ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了100名同學(xué),對(duì)其日均課外閱讀時(shí)間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

t

男同學(xué)人數(shù)

7

11

15

12

2

1

女同學(xué)人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”.

(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動(dòng).

(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;

(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)軸上的一個(gè)定點(diǎn),其橫坐標(biāo)為),已知當(dāng)時(shí),動(dòng)圓過點(diǎn)且與直線相切,記動(dòng)圓的圓心的軌跡為

(Ⅰ)求曲線的方程;

(Ⅱ)當(dāng)時(shí),若直線與曲線相切于點(diǎn)),且與以定點(diǎn)為圓心的動(dòng)圓也相切,當(dāng)動(dòng)圓的面積最小時(shí),證明: 兩點(diǎn)的橫坐標(biāo)之差為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(Ⅱ)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對(duì)任意實(shí)數(shù)恒有,且當(dāng)時(shí), ,又.

(1)判斷的奇偶性;

(2)求證: 是R上的減函數(shù);

(3)求在區(qū)間[-3,3]上的值域;

(4)若xR,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求函數(shù)f(x)在[2a,4a]上的最小值;
(3)某同學(xué)發(fā)現(xiàn):總存在正實(shí)數(shù)a、b(a<b),使ab=ba , 試問:他的判斷是否正確?若不正確,請(qǐng)說明理由;若正確,請(qǐng)直接寫出a的取值范圍(不需要解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案