【題目】如圖,在直角梯形ABCD中,AD∥BC, AB⊥BC, BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE, AC, DE,得到如圖所示的空間幾何體.
(1)求證:AB⊥平面ADC;
(2)若AD=1,AB=,求點B到平面ADE的距離.
【答案】(1)證明見解析.
(2) .
【解析】分析:(1)證明DC⊥AB,AD⊥AB,即可得到AB⊥平面ADC.
(2)因為AB=,AD=1,所以BD=,依題意△ABD∽△DCB,得到CD=,利用等體積法即可.
詳解:(1)因為平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,
又BD⊥DC,DC平面BCD,所以DC⊥平面ABD.
因為AB平面ABD,所以DC⊥AB.
又AD⊥AB,DC∩AD=D,AD,DC平面ADC,所以AB⊥平面ADC.
(2)因為AB=,AD=1,所以BD=.
依題意△ABD∽△DCB,所以=,即=.
所以CD=.
故BC=3.
由于AB⊥平面ADC,AB⊥AC,E為BC的中點,
所以AE==.
同理DE==.
所以S△ADE=×1×=.
因為DC⊥平面ABD,
所以VA—BCD=CD·S△ABD=.
設(shè)點B到平面ADE的距離為d,
則d·S△ADE=VB—ADE=VA—BDE=VA—BCD=,
所以d=,即點B到平面ADE的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭天購物廣場某營銷部門隨機抽查了100名市民在2018年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為.
消費金額(單位:千元) | 人數(shù) | 頻率 |
8 | 0.08 | |
12 | 0.12 | |
8 | 0.08 | |
7 | 0.07 | |
合計 | 100 | 1.00 |
(1)試確定,,,的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在、和的三個群體中抽取7人進行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這7人中隨機選取2人,則此2人來自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì)_____.(填入所有正確結(jié)論的序號)
①最大值為,圖象關(guān)于直線對稱;
②圖象關(guān)于y軸對稱;
③最小正周期為π;
④圖象關(guān)于點對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點為原點,焦點F與圓的圓心重合.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)定點,當(dāng)P點在C上何處時,的值最小,并求最小值及點P的坐標(biāo);
(3)若弦過焦點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點的多面體中, 平面, 平面, .
(1)請在圖中作出平面,使得,且,并說明理由;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),當(dāng)x1 , x2∈(0,+∞)時,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.設(shè) ,則( )
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com