【題目】設A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,–2),C(4,1).
(1)若,求D點的坐標;
(2)設向量,,若k–與+3平行,求實數(shù) 的值.
【答案】(1)D(5,–4);(2)k=–.
【解析】
(1)設D(x,y),
∵A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,–2),C(4,1).如圖,
∴由,得(2,–2)–(1,3)=(x,y)–(4,1),
即(1,–5)=(x–4,y–1),
∴,解得x=5,y=–4,∴D(5,–4).
(2)∵=(1,–5),=(2,3),
∴k–=k(1,–5)–(2,3)=(k,–5k)–(2,3)=(k–2,–5k–3),
又+3=(1,–5)+3(2,3)=(1,–5)+(6,9)=(7,4),
且k–與+3平行,
∴7(–5k–3)–4(k–2)=0,解得k=–.
∴實數(shù)k的值為–.
科目:高中數(shù)學 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力,某移動支付公司在我市隨機抽取了100名移動支付用戶進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認為每周使用移動支付超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過的前提下,認為是否“喜歡使用移動支付”與性別有關(guān)?
(2)每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶,
①求抽取的4名用戶中,既有男“移動支付達人”又有女“移動支付達人”的概率;
②為了鼓勵女性用戶使用移動支付,對抽出的女“移動支付達人”每人獎勵500元,記獎勵總金額為,求的數(shù)學期望.
附表及公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定長為3的線段兩端點、分別在軸,軸上滑動,在線段上,且.
(1)求點的軌跡的方程;
(2)設點是軌跡上一點,從原點向圓作兩條切線分別與軌跡交于點,,直線,的斜率分別記為,.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點P是函數(shù)圖象上任意一點,點Q坐標為,當取得最小值時圓上至多有2個點到直線的距離為1,則實數(shù)的取值范圍為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位后,所得圖象對應的函數(shù)為.若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com