已知函數(shù)f(x)=
1
2x-1
+a(a∈R)為奇函數(shù),函數(shù)g(x)=m•2x-m.
(1)求函數(shù)f(x)的解析式;
(2)若在區(qū)間(-∞,0)上,y=f(x)的圖象恒在y=g(x)的圖象的下方,試確定實(shí)數(shù)m的范圍.
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)解析式的求解及常用方法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由函數(shù)f(x)=
1
2x-1
+a(a∈R)為奇函數(shù),可得:f(-x)+f(x)=0,求出a值后,進(jìn)而得到函數(shù)f(x)的解析式;
(2)若在區(qū)間(-∞,0)上,y=f(x)的圖象恒在y=g(x)的圖象的下方,
解答: 解:(1)∵函數(shù)f(x)=
1
2x-1
+a(a∈R)為奇函數(shù),
∴f(-x)+f(x)=
1
2-x-1
+a+
1
2x-1
+a=
-2x
2x-1
+a+
1
2x-1
+a=2a-1=0,
解得:a=
1
2

故f(x)=
1
2x-1
+
1
2

(2)若在區(qū)間(-∞,0)上,y=f(x)的圖象恒在y=g(x)的圖象的下方,
∴當(dāng)x∈(-∞,0)時(shí),
1
2x-1
+
1
2
<m•2x-m恒成立,
2x+1
2(2x-1)
<m(2x-1)恒成立,
即m<
2x+1
2(2x-1)2
=
1
2(2x+
4
2x
)-6
恒成立,
當(dāng)x∈(-∞,0)時(shí),2x∈(0,1),2x+
4
2x
∈(5,+∞),2(2x+
4
2x
)-6
∈(4,+∞),
1
2(2x+
4
2x
)-6
∈(0,
1
4

故m≤0
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),函數(shù)恒成立問(wèn)題,函數(shù)解析式的求法,函數(shù)的圖象關(guān)系,是函數(shù)圖象與性質(zhì)的綜合應(yīng)用,難度較大,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x+1
2x-1
≤0的解集為( 。
A、(-∞,-
1
2
]∪[1,+∞)
B、[-
1
2
,1]
C、(-∞,-1)∪[
1
2
,+∞)
D、[-1,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2x2-2x+3的單調(diào)區(qū)間.(作圖求解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax-1
(Ⅰ)若a=1時(shí),求f(x)在R上的值域;
(Ⅱ)求f(x)在[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)B在以AC為直徑的圓上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(Ⅰ)證明:SC⊥EF;
(Ⅱ)若SA=a,∠ASC=45°,∠AFE=30°,求三棱錐S-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|3-2x≤0},B={x|x2-3x+2<0},U=R,求:
(1)A∩B   
(2)A∪B   
(3)(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)計(jì)算題,求[125 
2
3
+(
1
16
 -
1
2
+343 
1
3
] 
1
2
+(
1
3
0-ln
e
;
(Ⅱ)解方程:lg(10x)+2=4lgx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(4-2a)x+a2+1.
(1)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)設(shè)P=
1
2
[f(x1)+f(x2)],Q=f (
x1+x2
2
).試比較P與Q的大小;
(3)是否存在實(shí)數(shù)a∈[-8,0],使得函數(shù)f(x)在區(qū)間[-4,0]上的最小值為-7?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=ex-x.
(Ⅰ)求g(x)的最小值;
(Ⅱ)若存在x∈(0,+∞),使不等式
2x-m
g(x)
>x成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案