已知函數(shù)f(x)=x,函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)求λ的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍.
分析:(1)由題意由于f(x)=x,所以函數(shù)g(x)=λf(x)+sinx=λx+sinx,又因為該函數(shù)在區(qū)間[-1,1]上的減函數(shù),所以可以得到λ的范圍;
(2)由于g(x)<t2+λt+1在x∈[-1,1]上恒成立?[g(x)]max=g(-1)=-λ-sinl,解出即可;
解答:解:(1)∵f(x)=x,
∴g(x)=λx+sinx,
∵g(x)在[-1,1]上單調(diào)遞減,
∴g'(x)=λ+cosx≤0
∴λ≤-cosx在[-1,1]上恒成立,λ≤-1,故λ的最大值為-1.
(2)由題意[g(x)]
max=g(-1)=-λ-sinl
∴只需-λ-sinl<t
2+λt+1
∴(t+1)λ+t
2+sin+1>0(其中λ≤-1),恒成立,
令h(λ)=(t+1)λ+t
2+sin1+1>0(λ≤-1),
則
,
∴
,而t
2-t+sin1>0恒成立,
∴t<-1
又t=-1時-λ-sinl<t
2+λt+1
故t的取值范圍:t≤-1
點評:此題考查了導(dǎo)函數(shù),利用導(dǎo)函數(shù)求解恒成立問題,還考查了函數(shù)恒成立問題,二次函數(shù)的恒成立問題分兩類,一是大于0恒成立須滿足開口向上,且判別式小于0,二是小于0恒成立須滿足開口向下,且判別式小于0.