一條直線過點P(-3,),且圓x2+y2=25的圓心到該直線的距離為3,則該直線的方程為( )
A.x=-3或3x+4y+15=0
B.
C.x=-3
D.3x+4y+15=0
【答案】分析:分類討論,利用點到直線的距離公式,即可得出結論.
解答:解:當直線的斜率不存在時,直線方程為x=-3,圓x2+y2=25的圓心到該直線的距離為3,滿足題意;
當直線的斜率存在時,直線方程為,即,圓x2+y2=25的圓心到該直線的距離為=3,∴k=-,∴直線的方程為3x+4y+15=0
∴所求直線的方程為x=-3或3x+4y+15=0.
故選A.
點評:本題考查直線方程,考查分類討論的數(shù)學思想,考查點到直線的距離公式的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一條直線過點P(3,2)且與x軸、y軸的正半軸分別交于A、B兩點,則當S△OAB面積最小時,直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一條直線過點P(-3,-
3
2
),且圓x2+y2=25的圓心到該直線的距離為3,則該直線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年浙江省杭州市高二寒假作業(yè)數(shù)學理卷三 題型:填空題

一條直線過點P(3,2)且與軸、軸的正半軸分別交于A、B兩點,則當面積最小時,直線方程為____________;

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一條直線過點P(3,2)且與x軸、y軸的正半軸分別交于A、B兩點,則當S△OAB面積最小時,直線方程為______.

查看答案和解析>>

同步練習冊答案