()如圖,拋物線y=-x2+1與x軸的正半軸交于點(diǎn)A,將線段OAn等分點(diǎn)從左至右依次記為P1,P2,…,Pn-1,過這些分點(diǎn)分別作x軸的垂線,與拋物線的交點(diǎn)依次為Q1,Q2,…,Qn-1,從而得到n-1個(gè)直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-1Pn-1,當(dāng)n→∞時(shí),這些三角形的面積之和的極限為                  .


解析:

解析:如圖,拋物線y=-x2+1與x軸的正半軸交于點(diǎn)A(1,0),將線段OAn等分點(diǎn)從左至右依次記為P1,P2,…,Pn-1,過這些分點(diǎn)分別作x軸的垂線,與拋物線的交點(diǎn)依次為Q1,Q2,…,Qn-1,從而得到n-1個(gè)直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-2Pn-1, ∴ ,,,當(dāng)n→∞時(shí),這些三角形的面積之和的極限為.

整理得=。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=-x2+1與x軸的正半軸交于點(diǎn)A,將線段OA的n等分點(diǎn)從左至右依次記為P1,P2,…,Pn-1,過這些分點(diǎn)分別作x軸的垂線,與拋物線的交點(diǎn)依次為Q1,Q2,…,Qn-1,從而得到n-1個(gè)直角三角形△Q1OP1,△Q2P1P2,…,△Qn-1Pn-2Pn-1.當(dāng)n→∞時(shí),這些三角形的面積之和的極限為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=x2上有一點(diǎn)A(a,a2),a∈(0,1),過點(diǎn)A引拋物線的切線l分別交x軸與直線x=1于B,C兩點(diǎn),直線x=1交x軸于點(diǎn)D.
(1)求切線l的方程;
(2)求圖中陰影部分的面積S(a),并求a為何值時(shí),S(a)有最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-
1
2
x2
上有兩點(diǎn)A(x1,y1)、B(x2,y2),且
OA
OB
=0
,又
OM
=(0,-2)

(1)求證:
AM
AB
;
(2)若
MA
=-2
MB
,求AB所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ的長度取得最大值,其最大值是多少?
②是否存在這樣的點(diǎn)P,使∠OQA為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)如圖,拋物線y=-x2+9與x軸交于兩點(diǎn)A,B,點(diǎn)C,D在拋物線上(點(diǎn)C在第一象限),CD∥AB.記|CD|=2x,梯形ABCD面積為S.
(Ⅰ)求面積S以x為自變量的函數(shù)式;
(Ⅱ)若
|CD||AB|
≤k
,其中k為常數(shù),且0<k<1,求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案