橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是8和2,則該橢圓的方程是(  )
A、
x2
100
+
y2
64
=1
B、
x2
64
+
y2
100
=1
C、
x2
25
+
y2
16
=1
D、
x2
25
+
y2
16
=1或
x2
16
+
y2
25
=1
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)橢圓長半軸長及半焦距分別為a、c,由橢圓的性質(zhì)可得
a+c=8
a-c=2
,求出a,c,可得b,即可求出橢圓的方程.
解答: 解:設(shè)橢圓長半軸長及半焦距分別為a、c,
由已知得
a+c=8
a-c=2
,解得a=5,c=3,
所以b=
a2-c2
=4,
所以橢圓C的方程為
x2
25
+
y2
16
=1

故選:C.
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-3,4),
b
=(1,-1),則向量
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在定義域(-∞,0)上是增函數(shù),且f(1-a)<f(a-3),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用max{a,b}表示a,b中最大者,已知函數(shù)f(x)=2-4x,g(x)=x2,h(x)=max{f(|x|),g(|x|)},則h(x)min=( 。
A、2
B、
1
2
C、
1
4
D、
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,該程序框圖所輸出的結(jié)果是( 。
A、16B、30C、31D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上,復(fù)數(shù)z=i(1-3i)對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
x+3y≥4
2x+y≤3
所表示的平面區(qū)域的面積等于( 。
A、
5
3
B、
5
4
C、
5
6
D、
13
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,則z=x+2y的最小值為( 。
A、
2
2
B、11
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,0},B={1,2},則A∩B=( 。
A、{1,0,2}B、{1}
C、{2}D、{0}

查看答案和解析>>

同步練習(xí)冊答案