11.函數(shù)$f(x)=a{x^3}+bx+\frac{c}{x}+4$,滿足f(lg2015)=3,則$f(lg\frac{1}{2015})$的值為( 。
A.-3B.3C.5D.8

分析 根據(jù)條件構(gòu)造函數(shù)g(x)=f(x)-1,判斷函數(shù)的奇偶性,進(jìn)行求解即可.

解答 解:∵f(x)=ax3+bx+$\frac{c}{x}$+4,
∴f(x)-4=ax3+bx+$\frac{c}{x}$是奇函數(shù),
設(shè)g(x)=f(x)-4,則g(-x)=-g(x),
即f(-x)-4=-(f(x)-4)=4-f(x),
即f(-x)=8-f(x),
則$f(lg\frac{1}{2015})$=f(-lg2015)
若f(2015)=3,
則f(-lg2015)=8-f(lg2015)=8-3=5,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件構(gòu)造函數(shù),判斷函數(shù)的奇偶性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}滿足an+1=a${\;}_{n}^{2}$-nan+1,且a1=2.
(1)計(jì)算a2,a3,a4的值,由此猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)求證:2nn≤a${\;}_{n}^{n}$<3nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知是橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1的兩個(gè)焦點(diǎn),P是橢圓上的一點(diǎn),若∠F1PF2=$\frac{π}{3}$,則△F1PF2面積為$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)$f(x)=\left\{\begin{array}{l}-x+6,x≤2\\ 2+{log_a}x,x>2\end{array}\right.$(a>0,且a≠1)的值域是[4,+∞),則實(shí)數(shù)a的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合U={x|0≤x≤6,x∈N},A={2,3,6},B={2,4,5},則A∩(∁UB)=(  )
A.{2,3,4,5,6}B.{3,6}C.{2}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,點(diǎn)P從點(diǎn)O出發(fā),分別按逆時(shí)針?lè)较蜓刂荛L(zhǎng)均為12的正三角形、正方形運(yùn)動(dòng)一周,O,P兩點(diǎn)連線的距離y與點(diǎn)P走過(guò)的路程x的函數(shù)關(guān)系分別記為y=f(x),y=g(x),定義函數(shù)h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$考查下列結(jié)論:
①h(4)=$\sqrt{10}$;
②函數(shù)h(x)的圖象關(guān)于直線x=6對(duì)稱;
③函數(shù)h(x)值域?yàn)?[{0,\sqrt{13}}]$;
④函數(shù)h(x)增區(qū)間為(0,5).
其中正確的結(jié)論是①②③.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓的焦點(diǎn)為(-1,0)和(1,0),點(diǎn)P(2,0)在橢圓上,則橢圓的標(biāo)準(zhǔn)方程為(  )
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{y^2}{4}+{x^2}=1$D.$\frac{y^2}{4}+\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若點(diǎn)P是兩條異面直線a,b外一點(diǎn),則過(guò)P且與a,b都平行的平面?zhèn)數(shù)是( 。﹤(gè).
A.0個(gè)B.1個(gè)C.0或1個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)于兩隨機(jī)事件A,B若P(A∪B)=P(A)+P(B)=1,則事件A,B的關(guān)系是(  )
A.互斥且對(duì)立B.互斥不對(duì)立
C.既不互斥也不對(duì)立D.以上均有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案