已知函數(shù)f(x)=x3-2x2+1
(Ⅰ)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(Ⅱ)曲線(xiàn)f(x)上是否存在一點(diǎn)P,使得在點(diǎn)P處的切線(xiàn)平行于直線(xiàn)2x+y+3=0?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
解:(Ⅰ)f′(x)=3x
2-4x,由f′(x)=0得x
1=0,x
2=
當(dāng)x在[-1,2]上變化時(shí),f(x)和f′(x)的變化情況如下表
x | -1 | (-1,0) | 0 | (0,) | | (,2) | 2 |
f′(x) | | + | 0 | - | 0 | + | |
f(x) | -2 | 增函數(shù) | 1 | 減函數(shù) | - | 增函數(shù) | 1 |
由表格可知,函數(shù)f(x)在[-1,2]上的最大值為1,最小值為-2.
(II)由(I)知:f′(x)=3x
2-4x,
∴
,即曲線(xiàn)上的點(diǎn)P處的切線(xiàn)的斜率的取值范圍是
∵直線(xiàn)2x+y+3=0的斜率為-2,且-2∉
∴曲線(xiàn)上不存在點(diǎn)P,使得P處的切線(xiàn)平行于直線(xiàn)2x+y+3=0.
分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0解出其增區(qū)間,令導(dǎo)數(shù)小于0解出其減區(qū)間,并列出x變化時(shí),f'(x)
和f(x)的變化表格,由表中數(shù)據(jù)判斷最值即可;
(II)對(duì)于存在性問(wèn)題,可先假設(shè)存在,即假設(shè)存在點(diǎn)P,使點(diǎn)P處的切線(xiàn)與直線(xiàn)2x+y+3=0平行,再利用由導(dǎo)函數(shù)的幾何意義可知函數(shù)圖象在切點(diǎn)處的切線(xiàn)的斜率值即為其點(diǎn)的導(dǎo)函數(shù)值,求得切點(diǎn)的坐標(biāo),結(jié)合直線(xiàn)的方程求出斜率等于-2的直線(xiàn),若出現(xiàn)矛盾,則說(shuō)明假設(shè)不成立,即不存在;否則存在.
點(diǎn)評(píng):本題著重考查了導(dǎo)數(shù)的幾何意義,以及利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.本題還考查了存在性問(wèn)題,所謂存在性問(wèn)題,一般是要求確定滿(mǎn)足某些特定要求的元素有或沒(méi)有的問(wèn)題.解題思路是:先假定所需探索的對(duì)象存在或結(jié)論成立,以此為依據(jù)進(jìn)行計(jì)算或推理.