【題目】已知函數(shù),,令

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

【答案】1的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

2

【解析】

1)先求函數(shù)的定義域,然后求導(dǎo),通過導(dǎo)數(shù)大于零得到增區(qū)間;

2)不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,應(yīng)先求導(dǎo)數(shù),研究函數(shù)的單調(diào)性,然后求函數(shù)的最值;

解:(1)當(dāng)時(shí),

,所以.所以的單調(diào)遞增區(qū)間為

,所以.所以的單調(diào)遞減區(qū)間為

綜上可得:的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

2)令

所以

當(dāng)時(shí),因?yàn)?/span>,所以所以上是遞增函數(shù),

又因?yàn)?/span>

所以關(guān)于的不等式不能恒成立.

當(dāng)時(shí),

,所以當(dāng)時(shí),;當(dāng)時(shí),

因此函數(shù)是增函數(shù),在是減函數(shù).

故函數(shù)的最大值為

,因?yàn)?/span>,

又因?yàn)?/span>上是減函數(shù),所以當(dāng)時(shí),

所以整數(shù)的最小值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)在點(diǎn)處與軸相切

(1)求的值,并求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正方體的頂點(diǎn)作平面,使得正方體的各棱與平面所成的角都相等,則滿足條件的平面的個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)既存在極大值,又存在極小值.

1)求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),分別為的極大值點(diǎn)和極小值點(diǎn).,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),整理如下:

甲公司員工410,390,330,360,320,400330,340370,350

乙公司員工360420,370,360420,340,440,370360,420

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(350)的部分每件0.6元,超出350件的部分每件0.9.

1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個(gè)數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為 (單位:元),求的分布列和數(shù)學(xué)期望;

3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),總有,求的最小值;

2)對(duì)于中任意恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為CD,且過點(diǎn)P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為

1)求橢圓的方程;

2O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出的值為( )

A.80B.192C.448D.36

查看答案和解析>>

同步練習(xí)冊(cè)答案