【題目】已知橢圓的中心在坐標原點,焦點在
軸上,且橢圓
的一個頂點與拋物線
的焦點重合,離心率為
.
(1)求橢圓的標準方程;
(2)過橢圓的右焦點
且斜率存在的直線
交橢圓
于
兩點,線段
的垂直平分線交
軸于
點,證明:
為定值.
【答案】(1)(2)詳見解析
【解析】
(1)先由題意設(shè)橢圓的方程,再結(jié)合條件列出方程,從而可求出橢圓的方程;
(2)先設(shè)直線的方程,由直線與橢圓方程聯(lián)立,結(jié)合韋達定理表示出,以及
,化簡之后作商,即可證明結(jié)論.
解法一:
(1)設(shè)橢圓的標準方程為
,
由拋物線的焦點為
,得
,①
又,②
由①②及,解得
,
所以橢圓的標準化為
.
(2)依題意設(shè)直線的方程為
,
設(shè)點,
,
當時,聯(lián)立方程
得
,
,
所以,
,
的中點坐標為
,
的垂直平分線為
,
令,得
,
,
又,
所以,
當時,點
與原點重合,則
,
,所以
;
綜上所述,為定值
.
解法二:
(1)同解法一.
(2)依題意,當直線的斜率不為0時,設(shè)直線的方程為
,
設(shè)點,
,
聯(lián)立方程得
,
所以,
,
,
,
,
所以的中點坐標為
,
的垂直平分線為
,
令,得
,所以
,
所以;
當直線的斜率為0時,點
與原點重合,則
,
,
所以;
綜上所述,為定值
.
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)了一種新產(chǎn)品,在推廣期邀請了100位客戶試用該產(chǎn)品,每人一臺.試用一個月之后進行回訪,由客戶先對產(chǎn)品性能作出“滿意”或“不滿意”的評價,再讓客戶決定是否購買該試用產(chǎn)品(不購買則可以免費退貨,購買則僅需付成本價).經(jīng)統(tǒng)計,決定退貨的客戶人數(shù)是總?cè)藬?shù)的一半,“對性能滿意”的客戶比“對性能不滿意”的客戶多10人,“對性能不滿意”的客戶中恰有選擇了退貨.
(1)請完成下面的列聯(lián)表,并判斷是否有
的把握認為“客戶購買產(chǎn)品與對產(chǎn)品性能滿意之間有關(guān)”.
對性能滿意 | 對性能不滿意 | 合計 | |
購買產(chǎn)品 | |||
不購買產(chǎn)品 | |||
合計 |
(2)企業(yè)為了改進產(chǎn)品性能,現(xiàn)從“對性能不滿意”的客戶中按是否購買產(chǎn)品進行分層抽樣,隨機抽取6位客戶進行座談.座談后安排了抽獎環(huán)節(jié),共有6張獎券,其中一張印有900元字樣,兩張印有600元字樣,三張印有300元字樣,抽到獎券可獲得相應(yīng)獎金.6位客戶每人隨機抽取一張獎券(不放回),設(shè)6位客戶中購買產(chǎn)品的客戶人均所得獎金為元,求
的分布列和數(shù)學期望.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某市高中某學科競賽中,某一個區(qū)4000名考生的參賽成績統(tǒng)計如圖所示.
(1)求這4000名考生的競賽平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由直方圖可認為考生競賽z成績服正態(tài)分布,其中
,
分別取考生的平均成績
和考生成績的方差
,那么該區(qū)4000名考生成績超過84.41分(含84.81分)的人數(shù)估計有多少人?
附:①,
;②
,則
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某地區(qū)70歲以上老人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了100位70歲以上老人,結(jié)果如下:
男 | 女 | |
需要 | 18 | 5 |
不需要 | 32 | 45 |
(1)估計該地區(qū)70歲以上老人中,男、女需要志愿者提供幫助的比例各是多少?
(2)能否有的把握認為該地區(qū)70歲以上的老人是否需要志愿者提供幫助與性別有關(guān);
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)70歲以上老人中,需要志愿者提供幫助的老人的比例?說明理由.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調(diào)查.
(I)應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.
(i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的分布列與數(shù)學期望;
(ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
第一種生產(chǎn)方式 | 第二種生產(chǎn)方式 | |||||||||||||||||||
8 | 6 | 5 | 5 | 6 | 8 | 9 | ||||||||||||||
9 | 7 | 6 | 2 | 7 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 8 | ||||||
9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 8 | 1 | 4 | 4 | 5 | ||||||
2 | 1 | 1 | 0 | 0 | 9 | 0 |
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:
超過m | 不超過m | 總計 | |
第一種生產(chǎn)方式 | |||
第二種生產(chǎn)方式 | |||
總計 |
(3)根據(jù)(2)中的列表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在極坐標系中,
,
,
,
,
,弧
,
所在圓的圓心分別是
,
,曲線
是弧
,曲線
是線段
,曲線
是線段
,曲線
是弧
.
(1)分別寫出,
,
,
的極坐標方程;
(2)曲線由
,
,
,
構(gòu)成,若點
,(
),在
上,則當
時,求點
的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新冠狀病毒嚴重威脅著人們的身體健康,我國某醫(yī)療機構(gòu)為了調(diào)查新冠狀病毒對我國公民的感染程度,選了某小區(qū)的位居民調(diào)查結(jié)果統(tǒng)計如下:
感染 | 不感染 | 合計 | |
年齡不大于 | |||
年齡大于 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認為感染新冠狀病與不同年齡有關(guān)?
(3)已知在被調(diào)查的年齡大于歲的感染者中有
名女性,其中
位是女教師,現(xiàn)從這
名女性中隨機抽取
人,求至多有
位教師的概率.
附:,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),直線
,
是
圖象的任意兩條對稱軸,且
的最小值為
.
(1)求的表達式;
(2)將函數(shù)的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐
標不變,得到函數(shù)的圖象,若關(guān)于
的方程
,在區(qū)間
上有且只有一個實數(shù)解,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com