【題目】如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長(zhǎng)度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.

【答案】
(1)解:由切割線定理可得BC2=BMBA.

設(shè)AM=t,則

∵AB=8,BC=4,∴16=8(8﹣t),

∴t=6,即線段AM的長(zhǎng)度為6


(2)證明:由題意,∠A=∠MNB,∠B=∠B,

∴△BMN∽△BCA,

,

∵AB=2AC,

∴BN=2MN


【解析】(1)由切割線定理可得BC2=BMBA.由此可得方程,即可求線段AM的長(zhǎng)度;(2)證明△BMN∽△BCA,結(jié)合AB=2AC,即可證明:BN=2MN.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.

(1) 求f(x)的解析式;

(2) 設(shè), 若|g(x)|-af(x)+a≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到的圖像.

(1)求的單調(diào)遞增區(qū)間;

(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為等腰梯形,,已知,,,四邊形為直角梯形,,.

(1)證明:平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)從某校高一年級(jí)隨機(jī)抽取名學(xué)生,獲得了他們?nèi)掌骄邥r(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:

組號(hào)

分組

頻數(shù)

頻率

Ⅰ)求的值.

Ⅱ)若,補(bǔ)全表中數(shù)據(jù),并繪制頻率分布直方圖.

Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計(jì)該校高一學(xué)生的日平均睡眠時(shí)間不少于小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是美籍法國(guó)數(shù)學(xué)家伯努瓦..曼德?tīng)柌剂_特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,如圖是按照一定的分形規(guī)律生產(chǎn)成一個(gè)數(shù)形圖,則第13行的實(shí)心圓點(diǎn)的個(gè)數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

同步練習(xí)冊(cè)答案