已知函數(shù)f(x)滿足f(logax)=(x﹣x﹣1),其中a>0,a≠1
(1)對(duì)于函數(shù)f(x),當(dāng)x∈(﹣1,1)時(shí),f(1﹣m)+f(1﹣m2)<0,求實(shí)數(shù)m的集合;
(2)當(dāng)x∈(﹣∞,2)時(shí),f(x﹣4)的值恒為負(fù)數(shù),求a的取值范圍
解:(1)根據(jù)題意,令logax=t,則x=at,
所以,即
當(dāng)a>1時(shí),因?yàn)閍x﹣a﹣x為增函數(shù),且>0,所以f(x)在(﹣1,1)上為增函數(shù);
當(dāng)0<a<1時(shí),因?yàn)閍x﹣a﹣x為減函數(shù),且<0,所以f(x)在(﹣1,1)上為增函數(shù);
綜上所述,f(x)在(﹣1,1)上為增函數(shù).
又因?yàn)閒(﹣x)==﹣f(x),故f(x)為奇函數(shù).
所以f(1﹣m)+f(1﹣m2)<0f(1﹣m)<﹣f(1﹣m2
f(1﹣m)<f(m2﹣1)
由f(x)在(﹣1,1)上為增函數(shù),可得
解得1<m<,即m的值的集合為{m|1<m<}
(2)由(1)可知,f(x)為增函數(shù),則要使x∈(﹣∞,2),f(x)﹣4的值恒為負(fù)數(shù),
只要f(2)﹣4≤0即可,即f(2)==<4,
又a>0解得
又a≠1,可得符合條件的a的取值范圍是(2﹣,1)∪(1,2+).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時(shí),f(x)=f(x-1);當(dāng)x<1時(shí),f(x)=2x,則f(log27)=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案