12.已知圓O:x2+y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(Ⅰ)求實數(shù)a、b間滿足的等量關系;
(Ⅱ) 求線段PQ長的最小值;
(Ⅲ) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

分析 (Ⅰ)連接OQ、OP,則△OQP為直角三角形,利用|PQ|=|PA|,求P點的軌跡方程;
(Ⅱ)表示出|PQ|,利用配方法求|PQ|的最小值;
(Ⅲ) $|{OP}|=\sqrt{{a^2}+{b^2}}=\sqrt{{a^2}+{{(-2a+3)}^2}}=\sqrt{5{{(a-\frac{6}{5})}^2}+\frac{9}{5}}$,故當$a=\frac{6}{5}$時,${|{OP}|_{min}}=\frac{3}{5}\sqrt{5}$.此時,$b=-2a+3=\frac{3}{5}$,${R_{min}}=\frac{3}{5}\sqrt{5}-1$,即可求出半徑最小的圓的方程.

解答 解:(Ⅰ)連OP,∵Q為切點,PQ⊥OQ,由勾股定理有|PQ|2=|OP|2-|OQ|2
又由已知|PQ|=|PA|,故|PQ|2=|PA|2
即:(a2+b2)-12=(a-2)2+(b-1)2
化簡得實數(shù)a、b間滿足的等量關系為:2a+b-3=0.
(Ⅱ)由2a+b-3=0,得b=-2a+3.$|{PQ}|=\sqrt{{a^2}+{b^2}-1}=\sqrt{{a^2}+{{(-2a+3)}^2}-1}$=$\sqrt{5{a^2}-12a+8}$=$\sqrt{5{{(a-\frac{6}{5})}^2}+\frac{4}{5}}$,
故當$a=\frac{6}{5}$時,${|{PQ}|_{min}}=\frac{2}{5}\sqrt{5}$.即線段PQ長的最小值為$\frac{2}{5}\sqrt{5}$.
(Ⅲ)設圓P 的半徑為R,∵圓P與圓O有公共點,圓 O的半徑為1,∴|R-1|≤|OP|≤R+1.即R≥||OP|-1|且R≤|OP|+1.
而$|{OP}|=\sqrt{{a^2}+{b^2}}=\sqrt{{a^2}+{{(-2a+3)}^2}}=\sqrt{5{{(a-\frac{6}{5})}^2}+\frac{9}{5}}$,
故當$a=\frac{6}{5}$時,${|{OP}|_{min}}=\frac{3}{5}\sqrt{5}$.
此時,$b=-2a+3=\frac{3}{5}$,${R_{min}}=\frac{3}{5}\sqrt{5}-1$.
得半徑取最小值時圓P的方程為${(x-\frac{6}{5})^2}+{(y-\frac{3}{5})^2}={(\frac{3}{5}\sqrt{5}-1)^2}$.

點評 本題考查軌跡方程,考查直線與圓的位置關系,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{x^3}{3}+\frac{1}{2}a{x^2}$+2bx+c(a,b,c∈R),函數(shù)f(x)的兩個極值點分別在區(qū)間(0,1)與(1,2)內(nèi),則b-a+1的取值范圍是(2,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.數(shù)列{an}滿足:a1=1,an=an-1+3n,則a4等于( 。
A.4B.13C.28D.43

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=2x,x∈[0,3],則g(x)=f(2x)-f(x+2)的定義域為[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知關于關于x的不等式ax2+bx+c<0的解集為(-∞,-2)∪(-$\frac{1}{2}$,+∞),則不等式ax2-bx+c>0的解集為($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知動圓過定點P(2,0),且在y軸上截得弦長為4.
(1)求動圓圓心的軌跡Q的方程;
(2)已知點E(m,0)為一個定點,過E點分別作斜率為k1、k2的兩條直線l1、l2,直線l1交軌跡Q于A、B兩點,直線l2交軌跡Q于C、D兩點,線段AB、CD的中點分別是M、N.若k1+k2=1,求證:直線MN恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若a和b異面,b和c異面,則( 。
A.a∥cB.a和c異面
C.a和c異面或平行或相交D.a和c相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=loga(x+3)-1(a>0且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則$\frac{1}{m}+\frac{1}{n}$的最小值為(  )
A.$3+2\sqrt{2}$B.$4\sqrt{2}$C.4+2$\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,設F1、F2分別為橢圓的左、右焦點,橢圓上任意一個動點M到左焦點F1的距離的最大值 為$\sqrt{2}$+1
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線L的斜率為k,且過左焦點F1,與橢圓C相交于P、Q兩點,若△PQF2的面積為$\frac{\sqrt{10}}{3}$,試求k的值及直線L的方程.

查看答案和解析>>

同步練習冊答案