已知函數(shù)y=logax,當(dāng)x>2 時恒有|y|>1,則a的取值范圍是________.
[
,1)∪(1,2]
分析:當(dāng)a>1時,函數(shù)y=log
ax是增函數(shù),由|y|>1可得log
a2≥1,由此求得a的取值范圍.當(dāng)0<a<1時,函數(shù)
y=log
ax是減函數(shù),由|y|>1可得-log
a2≥1,由此求得a的取值范圍.再把a的取值范圍取并集,即得所求.
解答:當(dāng)a>1時,函數(shù)y=log
ax是增函數(shù),x>2 時,函數(shù)值為正實數(shù),故由|y|>1可得log
a2≥1,
解得 1<a≤2.
當(dāng)0<a<1時,函數(shù)y=log
ax是減函數(shù),x>2 時,函數(shù)值為負實數(shù),故由|y|>1可得-log
a2≥1,
化簡得 log
a2≤-1=
,2≥
>0,解得 1>a≥
.
綜上可得,a的取值范圍是[
,1)∪(1,2],
故答案為[
,1)∪(1,2].
點評:本題主要考查對數(shù)函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.