已知橢圓(a>b>0)過(guò)點(diǎn)M(0,2),離心率e=

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線y=x+1與橢圓相交于A、B兩點(diǎn),求S△AMB

答案:
解析:

  解:(Ⅰ)由題意得

  結(jié)合,解得

  所以,橢圓的方程為;5分

  (Ⅱ)由;6分

  即,經(jīng)驗(yàn)證

  設(shè)

  所以,8分

  ,

  ;11分

  因?yàn)辄c(diǎn)到直線的距離,13分

  所以.14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓(ab>0)的離心率為,,則橢圓方程為(  )

A.                B.

C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓(ab>0)的兩個(gè)焦點(diǎn)為F1,F2,過(guò)F2作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,若∠PF1F2=30°,那么橢圓的離心率是( 。

A.sin30°B.cos30°C.tan30°D.sin45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓 (a>b>0),A、B是橢圓上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(x0,0).證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省協(xié)作體高三5月第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓(a>b>0)拋物線,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

4

1

2

4

2

(1)求的標(biāo)準(zhǔn)方程;(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過(guò)原點(diǎn)O,若,

(i) 求的最值.

(ii) 求四邊形ABCD的面積;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省綿陽(yáng)市高三第二次月考文科數(shù)學(xué)試卷 題型:解答題

已知橢圓(a>b>0)的左、右焦點(diǎn)分別為Fl vF,離心率,A為右頂點(diǎn),K為右準(zhǔn)線與x軸的交點(diǎn),且.

(1) 求橢圓的標(biāo)準(zhǔn)方程

(2) 設(shè)橢圓的上頂點(diǎn)為B,問(wèn)是否存在直線l,使直線l交橢圓于C,D兩點(diǎn),且橢圓的左焦點(diǎn)F1恰為的垂心?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案