精英家教網 > 高中數學 > 題目詳情

【題目】若函數f(x)=x3﹣3ax+3a在區(qū)間(0,2)內有極小值,則a的取值范圍是( 。
A.a>0
B.a>2
C.0<a<2
D.0<a<4

【答案】D
【解析】對于函數f(x)=x3﹣3ax+3a,求導可得f′(x)=3x2﹣3a,
∵函數f(x)=x3﹣3ax+3a在(0,2)內有極小值,
∴y′=3x2﹣3a=0,則其有一根在(0,2)內,a>0時,3x2﹣3a=0兩根為±
若有一根在(0,2)內,則0<<2,即0<a<4.
a=0時,3x2﹣3a=0兩根相等,均為0,f(x)在(0,2)內無極小值.
a<0時,3x2﹣3a=0無根,f(x)在(0,2)內無極小值,
綜合可得,0<a<4,
故選:D.
【考點精析】根據題目的已知條件,利用函數的極值的相關知識可以得到問題的答案,需要掌握極值反映的是函數在某一點附近的大小情況.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關系,隨機統(tǒng)計了4次山高與相應的氣溫,并制作了對照表,由表中數據,得到線性回歸方程為y=﹣2x+a,由此估計山高為72(百米)處的氣溫為(

氣溫x(℃)

18

13

10

﹣1

山高y(百米)

24

34

38

64


A.﹣10
B.﹣8
C.﹣6
D.﹣4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)=x3﹣ax2+1在(1,3)內單調遞減,則實數a的范圍是(
A.[ ,+∞)
B.(﹣∞,3]
C.(3,
D.(0,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確命題的個數是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=x2cosx在 的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣ ﹣2alnx(a∈R) (Ⅰ)若函數f(x)在x=2時取極值,求實數a的值;
(Ⅱ)若f(x)≥0對任意x∈[1,+∞)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知m>0,n>0, +mn的最小值為t.
(1)求t值
(2)解關于x的不等式|x﹣1|<t+2x.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足
(Ⅰ)求∠C的大;
(Ⅱ)求sin2A+sin2B的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=axlnx+bx(a≠0)在(1,f(1))處的切線與x軸平行,(e=2.71828)
(1)試討論f(x)在(0,+∞)上的單調性;
(2)①設g(x)=x+ ,x∈(0,+∞),求g(x)的最小值; ②證明: ≥1﹣x.

查看答案和解析>>

同步練習冊答案