【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,與此同時(shí),相關(guān)管理部門推出了針對電商商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),對商品好評率為,對服務(wù)好評率為,其中對商品和服務(wù)都做出好評的交易為80次.
(1)是否可以在犯錯(cuò)誤率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(2)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.
注:1.
注2.
【答案】(1)見解析;(2).
【解析】試題分析:(1)由已知列出關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表,代入公式求得k2的值,對應(yīng)數(shù)表得答案;
(2)采用分層抽樣的方式從這200次交易中取出5次交易,則好評的交易次數(shù)為3次,不滿意的次數(shù)為2次,利用枚舉法得到從5次交易中,取出2次的所有取法,查出其中只有一次好評的情況數(shù),然后利用古典概型概率計(jì)算公式求得只有一次好評的概率.
試題解析:
(1)由題意可得關(guān)于商品評價(jià)和服務(wù)評價(jià)的列聯(lián)表:
對服務(wù)好評 | 對服務(wù)不滿意 | 合計(jì) | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計(jì) | 150 | 50 | 200 |
所以,
所以可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān).
(2)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,則好評的交易次數(shù)為3次,不滿意的次數(shù)為2次,令好評的交易為,不滿意的交易為.
從5次交易中,取出2次的所有取法.共計(jì)10種情況.
其中只有一次好評的情況是,共計(jì)6種情況.
因此,只有一次好評的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購物抽獎(jiǎng)活動中,假設(shè)某10張券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒有獎(jiǎng),某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得的獎(jiǎng)品總價(jià)值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面為的中點(diǎn),連接 (如圖2).
(1)求證: ;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),又是一個(gè)常數(shù),已知或時(shí), 只有一個(gè)實(shí)根,當(dāng)時(shí), 有三個(gè)相異實(shí)根,給出下列命題:
①和有一個(gè)相同的實(shí)根;
②和有一個(gè)相同的實(shí)根;
③的任一實(shí)根大于的任一實(shí)根;
④的任一實(shí)根小于的任一實(shí)根.
其中正確命題的個(gè)數(shù)為( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1+an= ﹣ ,n∈N* .
(Ⅰ)求a2 , a3 , a4;
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于兩點(diǎn), 是圓上不同于的任意一點(diǎn).
(1)求圓心的極坐標(biāo);
(2)求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸且取相同的單位長度建立極坐標(biāo)系.已知點(diǎn)的參數(shù)方程為(為參數(shù)),點(diǎn)在曲線上.
(1)求在平面直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線的普通方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)g(x)=x2﹣2bx﹣ ,若對于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com