【題目】某公司有價(jià)值10萬元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對其進(jìn)行技術(shù)改造,改造就需要投入,相應(yīng)就要提高產(chǎn)品附加值,假設(shè)附加值萬元與技術(shù)改造投入萬元之間的關(guān)系滿足:① 的乘積成正比;② 當(dāng)時(shí),;③,其中為常數(shù),且.

(1)設(shè),求出的表達(dá)式,并求出的定義域;

(2)求出附加值的最大值,并求出此時(shí)的技術(shù)改造投入的的值.

【答案】(1),;(2).

【解析】

(1)列出f(x)的表達(dá)式,求函數(shù)的定義域時(shí),要注意條件③的限制性.
(2)本題為含參數(shù)的二次函數(shù)在特定區(qū)間上求最值,結(jié)合二次函數(shù)的圖象及單調(diào)性解決,注意分類討論.

(1)設(shè),當(dāng) 時(shí),可得k=4,∴ ∴定義域?yàn)?/span>,t為常數(shù),;

(2)因?yàn)槎x域中

函數(shù)上單調(diào)遞減,故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為已知,其中為坐標(biāo)原點(diǎn), 為橢圓的離心率.

(1)求橢圓的方程;

(2)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,若AB=B,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足2acosB=2c﹣b.
(1)求角A;
(2)若△ABC的面積為 ,且a= ,請判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e),求a的值;
(2)當(dāng)1<x<2時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|.
(1)解不等式f(x)+f(x+1)≥5;
(2)若|a|>1且 ,證明:|b|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線與橢圓交于兩點(diǎn).

(1)求橢圓的方程;

(2)當(dāng)實(shí)數(shù)變化時(shí),求的最大值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;

(2)是否存在這樣的實(shí)數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓 的離心率,且橢圓上一點(diǎn)到點(diǎn)的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè), 為拋物線 上一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案