(2012•廣州一模)(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系中,已知直線l與曲線C的參數(shù)方程分別為l:
x=1+s
y=1-s
(s為參數(shù))和C:
x=t+2
y=t2
(t為參數(shù)),若l與C相交于A、B兩點,則|AB|=
2
2
分析:把直線l的參數(shù)方程化為直角坐標(biāo)方程,把曲線C的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立方程組求出交點坐標(biāo),
再利用兩點間的距離公式求出結(jié)果.
解答:解:把直線l:
x=1+s
y=1-s
(s為參數(shù))消去參數(shù),化為直角坐標(biāo)方程為 x+y-2=0.
把曲線C:
x=t+2
y=t2
(t為參數(shù))消去參數(shù),化為直角坐標(biāo)方程為 y=(x-2)2
把直線方程和曲線C的方程聯(lián)立方程組解得
x=1
y=1
,或
x=2
y=0

故|AB|=
(2-1)2+(0-1) 2
=
2
,
故答案為
2
點評:本題主要考查把參數(shù)方程化為普通方程的方法,求直線和曲線的交點坐標(biāo),兩點間的距離公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)如圖所示的莖葉圖記錄了甲、乙兩個小組(每小組4人)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.已知甲、乙兩個小組的數(shù)學(xué)成績的平均分相同.
(1)求a的值;
(2)求乙組四名同學(xué)數(shù)學(xué)成績的方差;
(3)分別從甲、乙兩組同學(xué)中各隨機選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)成績之差的絕對值為X,求隨機變量X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對任意a∈[3,4],函數(shù)f(x)在R上都有三個零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)設(shè)函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù)),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)證明:f(x)≥g1(x);
(2)當(dāng)x>0時,比較f(x)與gn(x)的大小,并說明理由;
(3)證明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知
e1
=(
3
,-1)
,
e2
=(
1
2
,
3
2
)
,若
a
=
e1
+(t2-3)•
e2
,
b
=-k•
e1
+t•
e2
,若
a
b
,則實數(shù)k和t滿足的一個關(guān)系式是
t3-3t-4k=0
t3-3t-4k=0
,
k+t2
t
的最小值為
-
7
4
-
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知平面向量
a
=(1,3)
b
=(-3,x)
,且
a
b
,則
a
b
=( 。

查看答案和解析>>

同步練習(xí)冊答案