【題目】數(shù)列: 滿足: .記的前項和為,并規(guī)定.定義集合, , .
(Ⅰ)對數(shù)列: , , , , ,求集合;
(Ⅱ)若集合, ,證明: ;
(Ⅲ)給定正整數(shù).對所有滿足的數(shù)列,求集合的元素個數(shù)的最小值.
【答案】(Ⅰ).(Ⅱ)見解析;(Ⅲ).
【解析】
(Ⅰ)根據(jù)題中所給的定義,即可求出結(jié)果;(Ⅱ)根據(jù)所給的條件,由集合的定義知,再結(jié)合,可推出;(Ⅲ)利用(Ⅱ)的結(jié)論,進一步求出關(guān)系,即集合的最小值.
(Ⅰ)因為, , , , , ,
所以.
(Ⅱ)由集合的定義知,且是使得成立的最小的k,
所以.
又因為 ,所以所以.
(Ⅲ)因為,所以非空.
設(shè)集合,不妨設(shè),則由(Ⅱ)可知,
同理,且.
所以 .
因為,所以的元素個數(shù).
取常數(shù)數(shù)列: ,并令,則,適合題意,且,其元素個數(shù)恰為.
綜上, 的元素個數(shù)的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】“互倒函數(shù)”的定義如下:對于定義域內(nèi)每一個,都有成立,若現(xiàn)在已知函數(shù)是定義域在的“互倒函數(shù)”,且當時,成立.若函數(shù)()都恰有兩個不同的零點,則實數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),整理如下:
甲公司員工:410,390,330,360,320,400,330,340,370,350
乙公司員工:360,420,370,360,420,340,440,370,360,420
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工每天所得勞務(wù)費的情況,從這10天中隨機抽取1天,他所得的勞務(wù)費記為 (單位:元),求的分布列和數(shù)學期望;
(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,為正三角形,平面平面,E為的中點,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點M,使得平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為C、D,且過點,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標原點,設(shè)直線CP交定直線x = m于點M,當m為何值時,為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“互聯(lián)網(wǎng)”是“智慧城市”的重要內(nèi)士,市在智慧城市的建設(shè)中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費.為了解免費在市的使用情況,調(diào)査機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)査的網(wǎng)友中抽取了人進行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費WiFi | 偶爾或不用免費WiFi | 合計 | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認為市使用免費的情況與年齡有關(guān);
(2)將頻率視為概率,現(xiàn)從該市歲以上的市民中用隨機抽樣的方法每次抽取人,共抽取次.記被抽取的人中“偶爾或不用免費”的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列,數(shù)學期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),為函數(shù)的兩個極值點,求證.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com