Processing math: 100%
16.sin2230°+sin110°•cos80°=34

分析 利用同角三角函數(shù)基本關(guān)系式、誘導(dǎo)公式及輔助角公式化簡求值.

解答 解:sin2230°+sin110°•cos80°=cos240°+cos20°sin10°
=12+12cos80°+cos20°sin(30°-20°)=12+12cos80°+cos20°12cos20°32sin20°
=12+12cos80°+12cos220°32sin20°cos20°=12+12cos80°+14+14cos40°34sin40°
=12+14+12cos80°12cos80°=34
故答案為:34

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡求值,考查了同角三角函數(shù)基本關(guān)系式、誘導(dǎo)公式及輔助角公式的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,點(diǎn)E在PD上,且PE:ED=2:1,面PAB∩面PCD=1.
(1)證明:l∥CD;
(2)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=(k-2)x2+(k-1)x+3是偶函數(shù),則函數(shù)g(x)=kx2+2x-3的遞減區(qū)間是( �。�
A.(1,+∞)B.(-1,+∞)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義:數(shù)列{an}對(duì)一切正整數(shù)n均滿足an+an+22>an+1,稱數(shù)列{an}為“凸數(shù)列”,以下關(guān)于“凸數(shù)列”的說法:
①等差數(shù)列{an}一定是凸數(shù)列;
②首項(xiàng)a1>0,公比q>0且q≠1的等比數(shù)列{an}一定是凸數(shù)列;
③若數(shù)列{an}為凸數(shù)列,則數(shù)列{an+1-an}是單調(diào)遞增數(shù)列;
④若數(shù)列{an}為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列.
其中正確說法的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l經(jīng)過點(diǎn)(a-2,-1)和(-a-2,1),且與經(jīng)過點(diǎn)(-2,1)斜率為-23的直線垂直,則實(shí)數(shù)a的值為( �。�
A.-23B.-32C.23D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=10+9xx2lgx1,則函數(shù)g(x)=f2xx1的定義域?yàn)椋ā 。?table class="qanwser">A.(1,10]B.12115]C.125]D.(1,2)∪(2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}滿足a1=5,1an+1-1an=5(n∈N+),則an=525n24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示是正方體的平面展開圖,在這個(gè)正方體中,其中正確的命題有( �。�
①BM與ED平行
②CN與BE是異面直線; 
③CN與BM成60°角
④DM與BN垂直.
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.己知y=f(x)是定義在R上的偶函數(shù),若x≥0時(shí),f(x)=x-1,則x<0時(shí),f(x)=-x-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案